Summary

通过低温扫描电子显微镜研究光合膜内冻结,割断叶片组织的超分子组织

Published: June 23, 2016
doi:

Summary

Here we describe a procedure for studying freeze-fractured plant tissues. High-pressure frozen leaf samples are freeze-fractured and double-layer coated, yielding well preserved frozen-hydrated samples that are imaged using the cryo-scanning electron microscope at high magnifications with minimal beam damage.

Abstract

冷冻断裂样品的冷冻扫描电子显微镜(SEM)允许在接近天然条件的生物结构的调查。在这里,我们描述了叶片样品中学习光合(类囊体)膜的超分子组织的技术。这是由叶组织的高压冷冻,冷冻压裂,双层涂层和最后低温SEM成像实现的。双层涂覆方法的使用允许获得高倍率(> 100000)与到冷冻水合样品最小光束损害以及最小充电效果的图像。使用所描述的过程,我们在采取复苏植物Craterostigma细叶脱水过程中进行,现场光系统和捕光天线蛋白复合物超分子分布调查改变。

Introduction

氧光合作用,原产于古代的蓝藻,是由内共生事件,导致叶绿体细胞器的开发继承了藻类和陆生植物。在所有现代的产氧光养,光合作用电子传输和质子动力的产生,并减少功率被称为“类囊体”膜扁平囊样小泡内进行。这些膜容纳该进行光合作用的光驱动反应和提供能量转换介质中的蛋白复合物。植物和(部分)藻类的类囊体膜分化成两个不同的形态结构域:紧紧贴伏膜的区域称为“基粒”和互连基粒未叠加膜,称为“基质片层1。植物和藻类类囊体膜的各种冷冻断裂研究已经进行,在70年代初开始。当冷冻断裂,膜沿着它们的疏水芯2分割,生成exoplasmic面(EF)和原生质面(PF),这取决于蜂窝隔室其中半膜的边界,如最初由Branton 等人提出的。 。在1975年3植物和藻类类囊体有四种不同的裂缝面:EF文件,EFU,PFS和PFU,用's'和'U'表示'堆积'和'拆散'膜的区域,分别为。膜蛋白复合物,这是不分裂或破裂,必须保持与E或膜的P一侧的倾向。最初的意见,即类囊体的不同裂缝面包含不同大小的颗粒和密度4,以及随之而来的大量调查,导致了开展光反应所观察到的颗粒和膜蛋白复合物的鉴定和相关5-13 (见还回顾14,15)。

FRE类囊体膜的结-断裂试验通常进行于叶绿体或分离的类囊体膜的制剂(但见16,17),在任何改变的在结构和/或超分子组织的分离过程期间可能发生的危险。继骨折,复制是铂/炭(PT / C)的蒸发法制备,再由碳(C)厚厚的一层,最后是生物材料18的消化。复制是透射电子显微镜(TEM)观察。传统的冷冻断裂-复制技术继续作为用于研究光合膜的超分子组织和它们适应于不同的一个重要的工具, 例如 ,光,条件19-23。

在我们最近的homoiochlorophyllous复苏植物Craterostigma细叶 24的研究中,我们的目的是探讨在超分子组织为O的变化˚F类囊体膜,以及在整体蜂窝组织,脱水和复水过程中。该homoiochlorophyllous复活的物种的独特性在于它们能够生存在他们的营养组织(叶子)干燥的条件下,同时保持其光合机构。一旦水可用时,这些植物恢复和恢复小时内光合活性几天25。在这项研究中,冻结,割断叶样品的冷冻扫描EM(SEM)成像用高压冷冻样品冷冻固定组合。这些程序提供了在接近其原生状态26的状态可视化冷冻水合生物样品的方法。一个主要的好处是,样品冷冻断裂和涂层,没有连续的步骤后直接检查。这是在不同的相对含水量(RWC)植物的调查尤为重要,因为他们的水合状态,制备过程中保持不变。怎么样以往,人们关键缺点是,当在高放大倍率,光合复合物的大小的精确测量需要扫描冷冻水合样品可从光束损坏成像期间遭受,更是如此。为了克服这一点,一种方法被称为“双层涂层'(DLC)27,28与分别利用特定冷冻SEM成像条件相结合。这导致那些显著光束敏感较少样本和允许的有价值的信息,对光合蛋白质超分子组织和复苏植物C.其他细胞成分的阐明细叶 在原地高放大倍率。

Protocol

叶片组织1.超低温固定用高压冻结注意:本节介绍了如何进行叶片组织的高压冻结的冻结破裂实验。对于与植物样品的考虑看29。这可以适用于其他类型的组织或样品与一些修改。 使用刀片的角,挠0.1 / 0.2 mm铝血小板的0.1毫米空腔的底部( 图1)。至少准备一打血小板(6个样本)。采取小心不要在盘的圆周创建刀痕。 搔抓后,洗碟无水乙醇?…

Representative Results

图1显示了包含高压冻结,冻结,割断Craterostigma细叶叶片血小板冷冻SEM图像。在一些样品中,裂缝单元的大区域被获得( 图1A)。在其他情况下,叶片保持紧密结合到上盘并与它一起( 图1B)脱落。然而,即使在第二种情况下,某些叶组织可保持附着在血小板( 图1B,箭头)和数据的相当数量的刀槽仍可以通过成?…

Discussion

本文中所描述的技术允许保存完好的高压冷冻的植物组织的由低温扫描电子显微镜的范围内冻结,割断膜调查。使用这些程序的主要优点是样品制备是纯物理;涉及化学品或脱水任何步骤是必要的。因此,它可以在一个近乎原生状态26,32研究生物结构。用叶组织的好处是,可以得到在整体蜂窝组织的信息,以及作为研究特定的膜,如类囊体膜,其天然生理环境, 内,叶绿体内。另?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢安德烈Kaech(苏黎世大学)为他的扫描电子显微成像有用的建议。这项工作是由美国 – 以色列两国农业研究和发展基金(批准号:US-4334-10,ZR),以色列科学基金会(批准号:1034年至1012年,ZR),和人类前沿科学计划支持(RGP0005 / 2013,ZR)。透射电镜研究在欧文和Cherna莫斯科维茨中心纳米和生物纳米成像在魏茨曼科学研究所进行。

Materials

ethanol abs Bio-Lab 052505
isopropanol Bio-Lab 162605
1-hexadecene Sigma-Aldrich H7009
0.1/0.2 platelets Engineering Office M. Wohlwend GmbH, Switzerland 241 Platelets are of 3-mm diameter and 0.5-mm-thick (Type A) with 0.1/0.2-mm-deep cavities (of diamater 2 mm). Similar platelets can be obtained from Leica Microsystems.
high-precision-grade tweezers Electron Microscopy Sciences 72706-01 Dumont (Switzerland) Durostar style #5 tweezers; Can be substituted with other high-precision tweezers.
high-pressure freezing machine Bal-Tec HPM 010 High-pressure freezing alternatives: 1. HPF Compact 02, Wohlwend GmbH; 2. HPM 010, RMC Boeckeler; 3. EM PACT2, Leica Microsystems; 4. EM HPM 100, Leica Microsystems; 5. EM ICE, Leica Microsystems.
freeze-fracture system Leica Microsystems EM BAF 060
cryo preparation loading stage Leica Microsystems 16770228
specimen holder for univeral freeze fracturing Leica Microsystems 16LZ04746VN Clamp holder for specimen carriers of diameter 3 mm
vacuum cryo-transfer shuttle Leica Microsystems EM VCT 100
scanning electron microscope Zeiss Ultra 055
cryo SEM stage Leica Microsystems 16770299905
image acquisiton software SmartSEM, Carl Zeiss Microscopy GmbH
image analysis software Fiji/Image J, National Institute of Health http://fiji.sc/Fiji

References

  1. Anderson, J. M. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust. J. Plant Physiol. 26 (7), 625-639 (1999).
  2. Branton, D. Fracture Faces of Frozen Membranes. Proc. Natl. Acad. Sci. U. S. A. 55 (5), 1048-1056 (1966).
  3. Branton, D., et al. Freeze-Etching Nomenclature. Science. 190 (4209), 54-56 (1975).
  4. Goodenough, U. W., Staehelin, L. A. Structural Differentiation of Stacked and Unstacked Chloroplast Membranes – Freeze-Etch Electron Microscopy of Wild-Type and Mutant Strains of Chlamydomonas. J. Cell Biol. 48 (3), 594-619 (1971).
  5. Simpson, D. J. Freeze-Fracture Studies on Barley Plastid Membranes .6. Location of the P700-Chlorophyll a-Protein-1. Eur. J. Cell Biol. 31 (2), 305-314 (1983).
  6. Staehelin, L. A. Reversible Particle Movements Associated with Unstacking and Restacking of Chloroplast Membranes. Invitro. J. Cell Biol. 71 (1), 136-158 (1976).
  7. Miller, K. R. A Chloroplast Membrane Lacking Photosystem-I – Changes in Unstacked Membrane Regions. Biochim. Biophys. Acta. 592 (1), 143-152 (1980).
  8. Miller, K. R., Cushman, R. A. Chloroplast Membrane Lacking Photosystem-II – Thylakoid Stacking in the Absence of the Photosystem-II Particle. Biochim. Biophys. Acta. 546 (3), 481-497 (1979).
  9. Miller, K. R., Staehelin, L. A. Analysis of Thylakoid Outer Surface – Coupling Factor Is Limited to Unstacked Membrane Regions. J. Cell Biol. 68 (1), 30-47 (1976).
  10. Simpson, D. J. Freeze-Fracture Studies on Barley Plastid Membranes .3. Location of the Light-Harvesting Chlorophyll-Protein. Carlsberg Res. Commun. 44 (5), 305-336 (1979).
  11. Olive, J., Recouvreur, M., Girardbascou, J., Wollman, F. A. Further Identification of the Exoplasmic Face Particles on the Freeze-Fractured Thylakoid Membranes – a Study Using Double and Triple Mutants from Chlamydomonas-Reinhardtii Lacking Various Photosystem-Ii Subunits and the Cytochrome B6/F Complex. Eur. J. Cell Biol. 59 (1), 176-186 (1992).
  12. Olive, J., Vallon, O., Wollman, F. A., Recouvreur, M., Bennoun, P. Studies on the Cytochrome B6/F Complex .2. Localization of the Complex in the Thylakoid Membranes from Spinach and Chlamydomonas-Reinhardtii by Immunocytochemistry and Freeze-Fracture Analysis of B6/F Mutants. Biochim. Biophys. Acta. 851 (2), 239-248 (1986).
  13. Armond, P. A., Staehelin, L. A., Arntzen, C. J. Spatial Relationship between Light Harvesting Complex and Photosystem-1 and Photosystem-2 in Stacked and Unstacked Chloroplast Membranes. J. Cell Biol. 70 (2), 400-418 (1976).
  14. Staehelin, L. A. Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth. Res. 76 (1-3), 185-196 (2003).
  15. Nevo, R., Charuvi, D., Tsabari, O., Reich, Z. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70 (1), 157-176 (2012).
  16. Platt, K. A., Oliver, M. J., Thomson, W. W. Membranes and Organelles of Dehydrated Selaginella and Tortula Retain Their Normal Configuration and Structural Integrity – Freeze-Fracture Evidence. Protoplasma. 178 (1-2), 57-65 (1994).
  17. Platt-Aloia, K. A., Thomson, W. W. Advantages of the use of intact plant tissues in freeze-fracture electron microscopy. J. Electron Microsc. Tech. 13 (4), 288-299 (1989).
  18. Carson, J. L. Fundamental technical elements of freeze-fracture/freeze-etch in biological electron microscopy. J. Vis. Exp. (91), e51694 (2014).
  19. Kirchhoff, H., et al. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry. 46 (39), 11169-11176 (2007).
  20. Johnson, M. P., et al. Photoprotective Energy Dissipation Involves the Reorganization of Photosystem II Light-Harvesting Complexes in the Grana Membranes of Spinach Chloroplasts. Plant Cell. 23 (4), 1468-1479 (2011).
  21. Kirchhoff, H., Tremmel, I., Haase, W., Kubitscheck, U. Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. Biochemistry. 43 (28), 9204-9213 (2004).
  22. Belgio, E., Ungerer, P., Ruban, A. V Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ. , (2015).
  23. Goral, T. K., et al. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J. 69 (2), 289-301 (2012).
  24. Charuvi, D., et al. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant. Plant Physiol. 167 (4), 1554-1565 (2015).
  25. Farrant, J. M., Brandt, W., Lindsey, G. G. An Overview of Mechanisms of Desiccation Tolerance in Selected Angiosperm Resurrection Plants. Plant Stress. 1 (1), 72-84 (2007).
  26. Walther, P., Schatten, H., Pawley, J. B. High-resolution cryoscanning electron microscopy of biological samples. Biological Low-Voltage Scanning Electron Microscopy. , 245-261 (2008).
  27. Walther, P., Müller, M. Double-layer coating for field-emission cryo-scanning electron microscopy–present state and applications. Scanning. 19 (5), 343-348 (1997).
  28. Walther, P., Wehrli, E., Hermann, R., Müller, M. Double-layer coating for high-resolution low-temperature scanning electron microscopy. J. Microsc. 179, 229-237 (1995).
  29. Hess, M. W. Cryopreparation methodology for plant cell biology. Cell. Electron Microsc. 79, 57-100 (2007).
  30. Schertel, A., et al. Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens. J. Struct. Biol. 184 (2), 355-360 (2013).
  31. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9 (7), 676-682 (2012).
  32. Walther, P. Recent progress in freeze-fracturing of high-pressure frozen samples. J. Microsc. 212 (1), 34-43 (2003).
  33. Nevo, R., et al. Architecture of Thylakoid Membrane Networks. Lipids Photosynth. 30, 295-328 (2009).

Play Video

Cite This Article
Charuvi, D., Nevo, R., Kaplan-Ashiri, I., Shimoni, E., Reich, Z. Studying the Supramolecular Organization of Photosynthetic Membranes within Freeze-fractured Leaf Tissues by Cryo-scanning Electron Microscopy. J. Vis. Exp. (112), e54066, doi:10.3791/54066 (2016).

View Video