Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

ポータブルFRETアナライザを使用して高感度かつ迅速な蛍光検出

Published: October 1, 2016 doi: 10.3791/54144
* These authors contributed equally

Summary

このプロトコルは、カスタムメイドのポータブルFRET分析器を用いて蛍光共鳴エネルギー移動(FRET)センサデータの迅速かつ高感度定量を記載しています。デバイスは、糖度の実用的かつ効率的な評価を可能にする、検出感度を最大臨界温度範囲にマルトースを検出するために使用しました。

Abstract

蛍光共鳴エネルギー移動(FRET)センサにおける最近の改善は、イオンおよびアミノ酸を含む種々の小分子を検出するためのそれらの使用を有効にしています。しかしながら、FRETセンサーの生来の弱い信号強度を様々な分野での応用を防止し、高価な、ハイエンドの使用が必要な蛍光光度計になり大きな課題です。以前、我々は、特に、高い検出感度を達成するために、2つの発光波長帯域(530および480 nm)との比を測定することができる費用対効果の高い、高性能なFRET分析器を内蔵しました。 55゜C - 最近では、それは、細菌ペリプラズム結合タンパク質とのFRETセンサー50の臨界温度範囲で最大感度を有するリガンドを検出することが発見されました。このレポートは、温度固有のFRETセンサーと当社のポータブルFRET分析装置を用いて、市販の飲料試料中の糖含量を評価するためのプロトコルについて説明します。我々の結果は、追加予熱することを示しましたFRETセンサーのプロセスが大幅糖含有量のより正確な測定を可能にするために、FRET比の信号を増大させます。カスタムメイドのFRET分析器及びセンサが正常に商業飲料3種類の糖含有量を定量化するために適用しました。我々はさらに小型化や機器の性能向上は、ハイエンドの機器が利用できない環境で手持ち分析装置の使用を容易にするであろうことを期待しています。

Introduction

蛍光共鳴エネルギー移動(FRET)が広く、糖、カルシウムイオン、およびアミノ酸1-4のような小分子を検出するための生体センサとして使用されてきました。 FRETバイオセンサーは、ペリプラズム結合タンパク質(のPBP)の両末端に融合される蛍光タンパク質、シアン蛍光タンパク質(CFPS)、および黄色蛍光タンパク質(YFPs)を含みます。糖は、その後のPBPの両端にある2つの蛍光タンパク質の距離と遷移双極子の向きを変化させるセンサに構造変化を引き起こし、FRETセンサーの中央に位置するのPBPに結合します。この変更は、EYFP(530 nm)をECFP(480 nm)での発光波長の比を測定することにより、糖度の定量分析を可能にします。高い感度、特異性、リアルタイムの監視能力、及びFRETバイオセンサーの速い応答時間のために、これらのセンサが広く、環境産業、および医療用途5で使用されています。また、ratiomセンサー濃度を容易に制御することができず、バックグラウンド蛍光が常に存在する複雑な生物学的試料中の成分を測定するために使用することができるようにFRETバイオセンサーを用いてetric測定は、重要な実用上の利点を有しています。

定量的な可視化のためのFRETベースのセンサのこれらの利点にもかかわらず、蛍光タンパク質の不完全なドメイン動き転送に小さな構造的変化は、本質的に弱い信号強度を生成します。この弱い信号は、 インビトロまたはインビボ分析 6 FRETベースのセンサの適用を制限します。その結果、ほとんどのFRETバイオセンサーは高価で高感度な装置の使用を必要とします。以前、我々は、既存の蛍光分析装置7と同様の機能を備えた安価なポータブルFRET分析装置を開発しました。この装置では、安価な405 nmの帯域紫外発光ダイオード(LED)は、目の励振を引き起こすために、光源として使用されました電子蛍光シグナル、高価なランプまたはレーザーを置き換えます。分析装置の検出システムは、効率的にシリコンフォトダイオードを有する2つの光検出器上に放熱蛍光信号を集束させます。 55°C大幅レシオメトリックFRETシグナル8を拡大できた-より最近の研究では、50の検出温度の最適化があることを示しました。この温度固有のシグナル増強は、カスタムメイドのFRETアナライザと一緒に、迅速かつ高感度で、より一般的な診断用途でのFRETセンサーの使用を可能にします。

このプロトコルでは、我々は、商業的に入手可能な飲料の糖含有量を定量することにより、最適なFRET温度条件下FRET解析の一般的な適用可能性を実証しました。このプロトコルは、FRETデバイス動作の詳細、ならびにセンサーおよび試料調製の簡単な説明を提供します。我々は、この報告書は、ポータブルの潜在的な適用を促進することを期待します小規模な実験室環境でのアナライザとFRETベースのバイオセンサーと安価なオンサイト診断装置のさらなる発展のための基盤を提供します。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

バイオセンサーの作製

  1. 以前に確立されたプロトコル2に従うことにより、CFP-MBP-YFP-のHis6 -プラスミドpET21a(+)を構築します。
  2. 大腸菌 DE3株の単一コロニーをルリアブロス(LB)の5ミリリットルを接種し、振盪しながら16時間37℃でインキュベートします。
  3. 転送100 mlのLBを含有し、600 nmで(OD 600)での光学密度が0.5(約3時間)に達するまで振盪インキュベーター中、37℃でインキュベートした500mlフラスコ中にO / N培養物を1ml。
  4. 4℃で20分間1000×gでの遠心分離によって50mlのコニカルチューブ中で細胞を収穫。
  5. 4℃で20分間、1,000×gで50ミリリットルの氷冷蒸留水(DW)と遠心で各チューブに迅速にペレットを再懸濁。
  6. 溶液(エレクトロ細胞)OD 600に達するまで穏やかに旋回することにより、10%(v / v)のグリセロールを氷冷DW50μlにペレットを再懸濁
  7. エレクトロポレーション装置およびエレクトロポレーションで氷冷エレクトロポレーションキュベットにCFP-MBP-YFP-のHis6 -エレクトロ細胞(OD 100の600の細胞を50μl)の混合物を配置し、プラスミドpET21a(+)の10 ngの混合物(18キロボルト/ cmで、25μF)。
  8. 迅速にキュベットに1ミリリットルSOC培地を加え、穏やかに15ミリリットル丸底チューブ中で振盪しながら1時間37℃での回復が続く、穏やかに細胞を再懸濁。
  9. 100μg/ mlのアンピシリンを含むLBプレート上に細胞を広げ、12時間37℃でインキュベートします。
  10. ループを使用して、単一のコロニーを単離し、12時間振とう機で37℃で100μg/ mlのアンピシリンを含むLB 10mlのコロニーを接種します。
  11. 100μg/ mlのアンピシリンを含むLBの500ミリリットルに種培養の5ミリリットルを加え、37℃の振盪インキュベーター中で培養をインキュベートします。
  12. 0.5mMのイソプロピルβ-D-チオガラクトシド(IPTG)ときOD 600に達するを追加0.5と24時間37℃で振盪インキュベーターでの培養をインキュベートします。
  13. 遠心分離機20分(4℃)のために4500×gで細胞と穏やかに上清を除去します。
  14. 5mLの結合緩衝液(20mMのトリス-HCl、pH8.0の、1mMのPMSF、0.5mMのEDTA、および1mM DTT)中でペレットを再懸濁します。
  15. 各冷却の10秒でバースト以下、200-300 Wで6 10秒バーストで氷上で細胞を超音波処理します。
  16. 10,000×で溶解液を遠心 細胞破片をペレット化し、4℃で30分間、G。新しいコレクションチューブに上清(可溶性タンパク質)を転送します。
  17. Ni-NTAアフィニティーカラム(5mlの容量)にFRETセンサータンパク質のアフィニティー精製、負荷クリア細胞溶解物を4mlを達成し、高速タンパク質液体クロマトグラフィー(FPLC)18を使用してクロマトグラフィーアッセイを行います。
  18. 洗浄緩衝液I(50mMリン酸緩衝液、300mMの塩化ナトリウム、10mMイミダゾール、pH7.0)での5カラム容量で一度カラムを洗浄します。
  19. 洗浄バッファーIIの5カラム容量の(50mMリン酸緩衝液、300mMの塩化ナトリウム、20mMイミダゾール、pH7.0)で洗浄ステップを繰り返し。
  20. 溶出緩衝液の5カラム容量の(50mMリン酸緩衝液、300mMの塩化ナトリウム、500mMイミダゾール、pH7.0)でセンサータンパク質を溶出させます。
  21. 溶出された試料を濃縮し、脱塩するために、3000×gで10分間のサンプルと遠心機の最大20 mlの濃縮器(10,000 MWの膜サイズ)を記入してください。 0.8%リン酸緩衝生理食塩水(PBS)を用いて濃縮器を補充。最初のサンプル20mlでコンセントレータを充填し、その後、PBSで再充填、二回、この手順を繰り返します。
  22. 濃縮し、脱塩漬けセンサータンパク質を回収し、-80℃で保管してください。

FRET Analyzerを使用して、糖度の2.測定

注:FRETアナライザ構成の詳細は、私たちの前の仕事7で説明しました。

  1. 0.2を含有する0.8%PBSの検出溶液を調製センサータンパク質のμM。
  2. FRET分析装置の電源をオンにします。最適な温度を校正するために2秒間「UP」ボタンを押してください。 "UP"と "DOWN"ボタンを使用して53℃に温度を設定し、「SET」ボタンを押してください。
  3. キャリブレーションのために、プレスおよび2秒間同時に「UP」と「DOWN」ボタンを押し続けます。 LEDパネルディスプレイ「CALIB」とは、「SET」ボタンを押していることを確認します。
  4. アナライザのキュベットホルダーにバッファリングし、「SET」ボタンを押すだけで、PBSを含む12.5×12.5×45ミリメートル(高さ×幅×長さ)の直方体容器(キュベット)を配置します。
  5. 砂糖なしのみ検出溶液(2.1を参照)(マルトース/スクロース)を含むものとキュベットを交換し、ベースラインを較正するための「SET」ボタンを押してください。
  6. 10mMの砂糖を検出溶液を含むものとキュベットを交換し、「SET」を押してくださいボタン。
  7. 飲料サンプルの糖度を測定するために、1分間16,000×gで1.5 mlのマイクロ遠心チューブと遠心分離機に1 mlの飲料サンプルを置きます。
    注:FRETセンサーベースの蛍光測定は、サンプルのわずか1%(V / V)が全容量に含まれているので、サンプルの特別な前処理を必要としないという利点を有します。しかし、我々は、蛍光測定( 例えば、細胞、不溶性粒子、脂質、脂肪、または自家蛍光を持つ任意の材料)に影響を与える可能性のある物質を除去することをお勧めします。強酸、強塩基、剤(界面活性剤)を洗浄、又は乳化剤(乳化剤)が高濃度で存在し、FRET生体センサの特性に影響を与える可能性がある場合に加えて、それは、有機溶媒または使用して除去されるべきです中和剤。乳脂肪および乳化剤を凍結スナックから除去されたとき、例えば、試料を16,000×30分間、G、および液体betweeで微量遠心管中で遠心分離しますnは底質や乳製品脂肪のトップ層が抽出されます。ヘキサンの等量は、その後脂質を除去するために30分間、15,000×gで遠心分離し、続いて添加されます。
  8. 1-mlシリンジで上清を除去し、シリンジフィルター(孔径0.2μm)を通してそれをフィルタリングします。
  9. 静かに0.9ミリリットルのPBSと渦を含む1.5 mlのマイクロ遠心チューブに飲料サンプルフィルタリング0.1ミリリットルを置きます。
    注:それは正しく飲料サンプルを希釈することが重要です。糖濃度は、装置のダイナミックレンジ内に入るであろうように、この場合には、1000倍希釈を行いました。私たちは、飲料のラベルで糖度を参照することにより、事前に対象の糖濃度を推定することをお勧めします。
  10. 検出溶液の0.495ミリリットルを含むキュベットに希釈飲料サンプル(1%、v / v)での5μlを添加します。
  11. FRET分析器のキュベットホルダーにキュベットを置き、53℃に試料溶液を予熱。
  12. 糖度を測定するための「SET」ボタンを押してください。
    535分の488ナノメートル7,8割合を読み取ることによって、温度制御用のペルチェ素子を備えたマルチラベルプレートリーダーまたは蛍光分光光度計を使用して、FRET測定を評価することが可能であることに注意。ショ糖検出のために、CSY-LHセンサ2で1.1から2.12への手順に従ってください。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

FRET分析器を用いて糖度の定量分析を行うためには、観察されたFRET比から標的糖濃度を推定する近似曲線を構築することが必要です。 rは、480 nmでのCFPの発光強度の比とYFPの発光強度は、530nmで生成された定義でき(式1)。

式(1)

FRETバイオセンサー(53℃、CMY-BII)の用量反応曲線は、異なる糖濃度で、R、FRET比を観察することによって生成することができます。次のように、曲線は、その後、S字状、S字状曲線として表すことができます。

式(2)

R maxおよびR minはそれぞれ、(千μM)0の糖濃度で信号比を表し、飽和であり; X 0は、50%の応答における糖濃度を表します。 pは 1または-1に近いです応答の傾きを表しています。本研究は、Rの最大値最小の R、X 0、およびpは、それぞれ、4.256、2.672、71.779、および1です。 1μM〜1000μMの濃度範囲は、フィッティングモデルで使用されました。

式1および2を使用して、市販の飲料の糖含量は、FRET分析器を用いて定量しました。二つマルトースFRETセンサーを、種々の温度2,8に応じて、R、信号を試験するために試験しました。第一FRETセンサーは、CMY-0は、nは、CFP、マルトース結合タンパク質(MBP)、およびYFPからなる基本的なFRETベースのセンサでありますOリンカーペプチド。第二のセンサ、CMY-BIIは、MBPと2の蛍光タンパク質の2間のSer-Argのリンカーを有しています。 図1(a)に示すよう 0と1 mMのマルトース濃度との間に信号差がないように、CMY-0は、50℃以下の測定温度で観察されません。両方の信号の差は( 図1)のセンサ50と55℃の間で最大にされたFRET 8。市販飲料の3種類の糖含有量を定量するために、53-℃、CMY-BIIセンサーの用量反応曲線は、( 図2A)を生成し、3つのサンプルのマルトース含有量は、以下によって同定されましたマルトース濃度にFRET比を変換します。

サンプルAは、重要マルトース源である例えば米や麦などの穀類から作られているように、サンプルが比較的高いマルトース含量(平均11.892グラム/ 235 ml)を含有することが予想されました(

図1
様々な温度でFRET分析を用いて、0および1mMマルトース間の図1 FRET信号差(A)CMY-0センサが50℃未満の温度で異なるマルトース濃度ではシグナルの差を示さなかった。(B)CMY-BIIセンサは、広範囲の温度で0および1mMマルトース間のFRETシグナルの違いを区別することができました。 ( - 55°C 50)の両方の場合において、信号差が劇的に、特定の温度範囲で増加しました。電子rrorバーは標準偏差を表す。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図2
図2マルトース CMY-BII ための3つ市販の飲料。(A) は、用量反応曲線のコンテンツ定量 。(B)は、3飲料試料のマルトース含量を定量しました。 「全糖」は、飲料ラベルの飲料メーカーによって報告された(マルトースを含む)すべての砂糖の量を示すことに注意してください。エラーバーは標準偏差を示している。 この図の拡大版をご覧になるにはこちらをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

このプロトコルは、FRETセンサーのための最適な温度でカスタムメイドのFRET解析装置7を使用して、飲料試料中の糖含量の迅速かつ効率的な定量化を可能にします。分析器は、光源とシリコンフォトダイオードと2つの光検出器として最近開発された、安価な405-nm帯の紫外LEDで設計されました。このデバイスは、より費用対効果の他の同等の蛍光光度計よりなります。デバイスは、特にFRETセンサーのための最適な温度範囲で2つの発光波長帯域の比(530 nmおよび480 nm)を測定する場合、高い検出感度を示しました。種々の糖の検出感度と強度を蛍光分光器7のものよりも優れていました。

このプロトコルの主な目的は、カスタムメイドのFRET分析器でFRETベースのセンサの幅広い適用性をサポートすることです。アナライザは、間接的に私は、FRETセンサーを経由して糖度を測定しながら、tは、デバイスが広く伸縮遺伝子操作されたリガンド特異性、モジュラー設計、センサー濃度に依存した信号、及び細胞内小分子の正確なターゲティングを含むFRETセンサーの多くの利点を組み込むことは明らかです。 FRETセンサーは、実際のイオン9、ヘム10、及びその他を含む小分子の広い範囲を検出するために使用されます。また、FRET構築物の20以上の種類が容易に発見し、非営利の預託AddGene 11を介して注文することができます。

FRET分析器の広い適用にもかかわらず、デバイスの動作を持つ2つの主要な問題があります。装置の動作は比較的単純であるため、まず、試料の前処理は、装置の故障の場合を除いて、検出の品質に影響を与える重要な工程です。このプロトコルでは、1ステップ(サンプル希釈)が明らかに透明であった液体試料を処理するのに十分であったと全く不溶性パルティが含まれていませんクル。しかし、他の試料は、細胞または脂質成分のような不溶性物質を除去するための追加の処理を必要とし得ます。ステップ2.7以下に述べたようにFRETシグナルに影響を与えることができる任意の自家蛍光粒子はまた、削除する必要があります。第二に、品質管理と病院情報システムとのインタフェースの接続は、ポイントオブケア検査(POCT)ツール12のすべてのタイプと同様に、対処する必要があります。 FRET解析の信号品質が大きくFRETセンサーの品質及び前処理ステップに依存するため、定期的な品質管理チェックは、測定は、通常の品質管理データ分析のための標準的な信号範囲内に留まることを確実にするために必要とされます。さらに信頼性の高いアプリケーションのために不可欠であり、どちらもFRETセンサーの安定性および保存期間は、品質管理チェック中に検討されるべきです。ガイドラインを作成し、適切なソフトウェアを開発することも、接続の制限に対処することができます。現在のバージョンFRET解析装置は、リモートコマンドライン制御用のRS232接続が装備されているが、無線通信は、病院情報システムのための改良されたインターフェースを持つことになりますアナライザの次のバージョンの特徴であり得ます。

しかし、FRETセンサーは、基質特異性のために通常より広範な特異性2を可能にする手法を操作されています。その結果、FRETシグナルは、市販の飲料中の糖の他のタイプを含む他の成分、意図しない干渉が発生することがあります。さらなる調査は正確に砂糖の量を定量化するために、様々な砂糖の混合物にどのように対応するかFRETセンサー探るべきです。飲料を生産する企業との連携は、FRET分析装置の校正するために糖度を確認するのに役立ちます。

種々のFRETセンサーを提案ポータブルFRETデバイスはPOCT用途で使用されることが予想されます。 POCTは妊娠、血液を評価するために使用されますグルコースレベル、バイオマーカータンパク質、感染性細菌、感染性ウイルス。 POCTの方法は、迅速なターンアラウンド時間を有し、一般に処理工程の数が少ないために低い誤り率を示します。これらは、中央検査室のテスト手法を超えるPOCTの重要な利点です。例えば、本明細書に記載した装置として携帯型POCT機器は、理由食品評価および血糖モニタリングにおけるそれらの潜在的なアプリケーションのますます注目を集めています。特に、糖尿病患者の血液試料のグルコースモニタリングは、迅速、正確、かつ費用対効果のPOCT法13を必要とします 。エイムス研究チームは、(グルコースオキシダーゼを含有するストリップを使用して)1965年に最初の血液グルコース試験片を作成した後、いくつかの技術は、血液グルコースモニタリングの目的の12のために提案されました。 FRETアナライザは、血液およびペリプラズムグルコース結合proteiの適切な前処理で血液サンプル中のグルコースを検出することも可能ですn個(MglB)14ベースのFRETタンパク質。

食品の品質評価のためのシンプルで迅速な方法が必要とされています。糖含有飲料の消費量は、このような幼年期15で増加したボディ・マス・インデックス、小児肥満16、および脳卒中17のリスクなどの疾患および症候群、様々な関連付けられています。この接続を理解することは、飲料中の糖成分の正確な測定を必要とします。したがって、飲料のブドウ糖と果糖の濃度は、ヒトの健康に関わる科学者にとって関心のあります。このプロトコルは、最適な温度制御を備えたFRET分析装置の高感度性能を示しています。装置は、グルコースおよびフルクトース14,15を含む種々の小molecules-を検出するために、種々のFRETセンサーを使用することができます。 10の電池寿命があり、当社のポータブル充電式デバイス、 - 加熱プロトコルに応じて、20時間は、POCTに適用可能です。そのシンプルな運用プロトコルMAKエス簡単にデバイスが使用すると、複雑なスタッフのトレーニングの必要性を排除します。機器の小型化、前処理工程の最小化、および現場での使用のための実用的な要件の識別を含む技術的な改善と、このデバイスは、小規模な実験室環境でのFRETベースの研究開発を推進していきます。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者らは、開示することは何もありません。

Acknowledgments

この研究は、グローバルフロンティアプロジェクト(2011から0031944)とKRIBB研究イニシアティブプログラムのインテリジェント合成生物学センターからの助成金によってサポートされていました。

Materials

Name Company Catalog Number Comments
LB BD #244620
isopropyl β-D-thiogalactoside (IPTG) Sigma I6758
Ampicillin Sigma A9518
Tri-HCl Bioneer C-9006-1
PMSF Sigma 78830
EDTA Bioneer C-9007
DTT Sigma D0632
NaCl Junsei 19015-0350
phosphate-buffered saline (PBS) Gibco 70011-044 0.8% NaCl, 0.02% KCl, 0.0144% Na2HPO4, 0.024% KH2OP4, pH 7.4
SOC 2% tryptone, 0.5% Yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MGCl2, 20 mM Glucose
Resource Q Amersham Biosciences 17-1177-01 6 × 30 mm anion-exchange chromatography column 
HisTrap HP1 Amersham Biosciences 29-0510-21
Quartz cuvette Sigma Z802875
AKÄKTAFPLC Amersham Biosciences 18-1900-26 a fast protein liquid chromatography (FPLC)
Cary Eclipse VarianInc a fluorescence spectrophotometer
VICTOR   PerkinElmer 2030-0050 a multilabel plate reader
E. coli JM109 (DE3) Promega Electrocompetent cells
A (Beverage) Korea Yakult Co. (Korea) Birak Fermented drinks
B (Beverage) Lotte Foods (Korea) Epro Soft drink
C (Beverage) Lotte Foods (Korea) Getoray Sports drink

DOWNLOAD MATERIALS LIST

References

  1. Deuschle, K., Okumoto, S., Fehr, M., Looger, L. L., Kozhukh, L., Frommer, W. B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 14 (9), 2304-2314 (2005).
  2. Ha, J. S., Song, J. J., Lee, Y. M., Kim, S. J., Sohn, J. H., Shin, C. S., Lee, S. G. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 73 (22), 7408-7414 (2007).
  3. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 101 (29), 10554-10559 (2004).
  4. Okumoto, S., Looger, L. L., Micheva, K. D., Reimer, R. J., Smith, S. J., Frommer, W. B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102 (24), 8740-8745 (2005).
  5. Merzlyakov, M., Li, E., Casas, R., Hristova, K. Spectral Förster resonance energy transfer detection of protein interactions in surface-supported bilayers. Langmuir. 22 (16), 6986-6992 (2006).
  6. Zhang, J., Campbell, R. E., Ting, A. Y., Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3 (12), 906-918 (2002).
  7. Kim, H., Kim, H. S., Ha, J. S., Lee, S. G. A portable FRET analyzer for rapid detection of sugar content. Analyst. 140 (10), 3384-3389 (2015).
  8. Gam, J., Ha, J. -S., Kim, H., Lee, D. -H., Lee, J., Lee, S. -G. Ratiometric analyses at critical temperatures can magnify the signal intensity of FRET-based sugar sensors with periplasmic binding proteins. Biosens. Bioelectron. 72, 37-43 (2015).
  9. Hessels, A. M., Merkx, M. Genetically-encoded FRET-based sensors for monitoring Zn2+ in living cells. Metallomics. 7 (2), 258-266 (2015).
  10. Song, Y., Yang, M., Wegner, S. V., Zhao, J., Zhu, R., Wu, Y., He, C., Chen, P. R. A genetically encoded FRET sensor for intracellular heme. ACS Chem. Biol. 10 (7), 1610-1615 (2015).
  11. Addgene. Fluorescent Protein Guide: Biosensors. , Available from: https://www.addgene.org/fluorescent-proteins/biosensors/ (2015).
  12. Rajendran, R., Rayman, G. Point-of-care blood glucose testing for diabetes care in hospitalized patients: an evidence-based review. J. Diabetes Sci. Technol. 8 (6), 1081-1090 (2014).
  13. American Diabetes Association. Standards of medical care in diabetes-2013. , Available from: http://care.diabetesjournals.org/site/misc/2016-Standards-of-Care.pdf (2015).
  14. Vyas, N. K., Vyas, M. N., Quiocho, F. A. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science. 242, 1290-1295 (1988).
  15. Leermakers, E. T. M., Felix, J. F., Erler, N. S., Ċerimagić, A., Wijtzes, A. I., Hofman, A., Raat, H., Moll, H. A., Rivadeneira, F., Jaddoe, V. W., Franco, O. H., Kiefte-de Jong, J. C. Sugar-containing beverage intake in toddlers and body composition up to age 6 years: The Generation R Study. Eur. J. Clin. Nutr. 69 (3), 314-321 (2015).
  16. Shilts, M., Styne, D., Drake, C., Aden, C., Townsend, M. Fast food, fat and sugar sweetened beverage items are related to children's dietary energy density. FASEB J. 29 (1), 731-736 (2015).
  17. Larsson, S. C., Åkesson, A., Wolk, A. Sweetened beverage consumption is associated with increased risk of stroke in women and men. J Nutr. 144 (6), 856-860 (2014).
  18. Melkko, S., Neri, D. Calmodulin as an affinity purification tag. E. coli Gene Expression Protocols. Vaillancourt, P. E. , Methods in Molecular Biology; 205. Humana Press. Totowa, NJ. 69-77 (2003).

Tags

生化学号116、蛍光共鳴エネルギー移動、携帯機器、ポイント・オブ・ケア検査、糖度、蛍光光度計、食品評価、蛍光共鳴エネルギー移動(FRET)
ポータブルFRETアナライザを使用して高感度かつ迅速な蛍光検出
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Kim, H., Han, G. H., Fu, Y., Gam,More

Kim, H., Han, G. H., Fu, Y., Gam, J., Lee, S. G. Highly Sensitive and Rapid Fluorescence Detection with a Portable FRET Analyzer. J. Vis. Exp. (116), e54144, doi:10.3791/54144 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter