Summary

高通量,矿化组织的多图像Cryohistology

Published: September 14, 2016
doi:

Summary

In this manuscript, we present a high-throughput, semi-automated cryohistology platform to produce aligned composite images of multiple response measures from several rounds of fluorescent imaging on frozen sections of mineralized tissues.

Abstract

There is an increasing need for efficient phenotyping and histopathology of a variety of tissues. This phenotyping need is evident with the ambitious projects to disrupt every gene in the mouse genome. The research community needs rapid and inexpensive means to phenotype tissues via histology. Histological analyses of skeletal tissues are often time consuming and semi-quantitative at best, regularly requiring subjective interpretation of slides from trained individuals. Here, we present a cryohistological paradigm for efficient and inexpensive phenotyping of mineralized tissues. First, we present a novel method of tape-stabilized cryosectioning that preserves the morphology of mineralized tissues. These sections are then adhered rigidly to glass slides and imaged repeatedly over several rounds of staining. The resultant images are then aligned either manually or via computer software to yield composite stacks of several layered images. The protocol allows for co-localization of numerous molecular signals to specific cells within a given section. In addition, these fluorescent signals can be quantified objectively via computer software. This protocol overcomes many of the shortcomings associated with histology of mineralized tissues and can serve as a platform for high-throughput, high-content phenotyping of musculoskeletal tissues moving forward.

Introduction

生物学研究通常需要高效率的表型,这是经常用某种组织学分析1-3相关联。这需要的是更为明显的雄心勃勃的计划,扰乱小鼠基因组中4每个基因。这些组织学分析的范围可以从评估细胞形态和/或解剖特征来特定基因或蛋白质到单个细胞的映射表达式。实际上,组织学的基因组学领域中的基本贡献之一是为特定的分子信号到特定区域或细胞类型相关联的能力。

组织学的传统方法,尤其是对肌肉骨骼组织中,往往费时费力,有时需要数周来修复时间,脱钙,部分染色和图像标本然后分析通过人眼可识别图像。分析多个分子信号,通过免疫组化,是否在原地 hybridizat离子或特殊污渍,需要多个章节,甚至多个标本适当地执行。此外,这些多个响应无法被共定位到相同的细胞,有时不能共定位到特定的区域的给定样品中。随着基因组学和表观基因组学领域的移动进入数字化时代,组织学领域也必须跟进,提供高效,高通量,以及单个组织切片中的各种分子信号的自动分析。

事实上,存在对可以在给定样品中的特定小区中的多个分子信号关联改进的组织学技术的需求。最近,我们已经发布了从矿化组织5-14评估某一部分内的几个应对措施的新高通量方法cryohistological。该过程涉及稳定冷冻cryotape的冷冻切片,拘泥于所录部分显微镜幻灯片,开展几轮染色和成像上的每节。这些轮次的图像,然后手动或通过之前的图像分析计算机自动化( 图1)对齐。在这里,我们提出这一过程的详细协议的,并提供这些技术提高了我们不同的生物过程的理解的例子。

Protocol

康涅狄格卫生中心的机构动物护理和使用委员会的批准大学所有的动物程序。 1.固定和嵌入通过安乐死的 CO 2窒息或其他认可的方法动物。 收获的兴趣,在10%中性缓冲的福尔马林的组织( 如,肢体,椎骨,等等),并置于4℃直到正确固定。特别注意前固定保持一致的解剖学位置。例如,在一致的屈曲,内旋固定含接头四肢,外旋角…

Representative Results

的一般工作流程为高通量,多图像Cryohistology 图1表示用于本技术的一般的工作流程。它包括从固定经过几轮的成像和图像终于对准/分析的几个步骤。该过程可能需要少至一个星期来从样品固定通过4轮成像的,这是比需要脱钙这些类型的样品更少的时间去。成像的顺序通常开始与已经在检体( 例?…

Discussion

这里,我们已经提出了详细cryohistology协议共定位并通过在一个单一的部对准来自多轮染色/成像的图像量化几个生物措施。因为它维持的困难部分组织的形态( 例如 ,矿化骨和软骨)使用cryotape概述的方法是特别有用的。此外,该截面​​组织被牢固地附着于玻璃载片,允许多轮同一节染色/成像的;不像在那里连续切片分别染色,不同的协议传统的方法。采用连续切片会带来一个问题,尝?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the following funding sources: NIH R01-AR063702, R21-AR064941, K99-AR067283, and T90-DE021989.

Materials

10% neutral buffered formalin Sigma Aldrich HT501128-4L Multiple suppliers available. Toxic. Can be substituted with 4% paraformaldehyde.
Sucrose Sigma Aldrich S9378 Multiple suppliers available.
PBS Sigma Aldrich P5368 Multiple suppliers available.
Cryomolds Fisher Scientific Fisherbrand #22-363-554 Different sizes can be used depending on tissue
Cryomatrix Thermo Scientific 6769006 Can be substitituted with other cryomatrices. However, PVA/PEG-based resins have worked best in our hands.
2-methyl-butane Sigma Aldrich M32631 Multiple suppliers available.
Cryostat Leica Biosystems 3050s Can be substituted with other brands/models.
Specimen disc Leica Biosystems 14037008587 Can be substituted with other brands/models.
Cryostat blades Thermo Scientific 3051835 Can be substituted with other brands/models.
Cryotape Section Lab Cryofilm 2C
Roller Electron Microscopy Sciences 62800-46 Can be substituted with other brands/models.
Plastic microscope slides Electron Microscopy Sciences 71890-01 Can be substituted with other brands/models.
Glass microscope slides Thermo Scientific 3051 Can be substituted with other brands/models.
Norland Optical Adhesive, 61 Norland Optical Norland Optical Adhesive, 61
UV Black Light General Electric F15T8-BLB
Glacial acetic acid Sigma Aldrich ARK2183 Multiple suppliers available.
Chitosan Sigma Aldrich C3646 Multiple suppliers available.
InSpeck red microscopheres ThermoFisher Scientific I-14787
InSpeck green microspheres ThermoFisher Scientific I-14785
Calcein Blue Sigma Aldrich M1255 Multiple suppliers available.
Calcein Sigma Aldrich C0875  Multiple suppliers available.
Alizarin complexone Sigma Aldrich A3882  Multiple suppliers available.
Demeclocycline Sigma Aldrich D6140  Multiple suppliers available.
NaHCO3 Sigma Aldrich S5761 Multiple suppliers available.
Glycerol Sigma Aldrich G5516 Multiple suppliers available.
ELF 97 yellow fluorescent acid phosphatase substrate ThermoFisher Scientific E-6588
DAPI ThermoFisher Scientific 62247 Multiple suppliers available. Can be substituted with Hoechst 33342 or other nuclear dyes.
TO-PRO-3 (Cy5 nuclear counterstain) ThermoFisher Scientific T3605
Propidium Iodide ThermoFisher Scientific R37108 Multiple suppliers available.
Sodium acetate anhydrous Sigma Aldrich S2889 Multiple suppliers available.
sodium tartrate dibasic dihydrate  Sigma Aldrich T6521 Multiple suppliers available.
Sodium nitrite Sigma Aldrich S2252 Multiple suppliers available.
Tris Sigma Aldrich 15504 Multiple suppliers available.
MgCl2 hexahydrate Sigma Aldrich M9272 Multiple suppliers available.
NaCl Sigma Aldrich S7653 Multiple suppliers available.
Fast Red TR Salt Sigma Aldrich F8764 Multiple suppliers available. Can also be substituted with other substrate kits such as Vector Blue (Vector Laboratories, Cat# SK-5300)
Naphthol AS-MX  Sigma Aldrich N4875 Multiple suppliers available.
N,N dimethylformamide Sigma Aldrich D158550 Multiple suppliers available.
Toluidine blue O Sigma Aldrich T3260 Multiple suppliers available.
Axio Scan.Z1 Carl Zeiss AG Axio Scan.Z1 Other linear or tiled scanners may also be used.
DAPI Filter Set Chroma Technology Corp. 49000
CFP Filter Set Chroma Technology Corp. 49001
GFP Filter Set Chroma Technology Corp. 49020
YFP Filter Set Chroma Technology Corp. 49003
Custom yellow (ELF 97) Filter Set Chroma Technology Corp. custom; HQ409sp, HQ555/30m, 425dxcr
TRITC Filter Set Chroma Technology Corp. 49004
Cy5 Filter Set Chroma Technology Corp. 49009
CryoJane Tape Transfer System Electron Microscopy Sciences 62800-10 Multiple suppliers available.
CryoJane Tape Windows Electron Microscopy Sciences 62800-72 Multiple suppliers available.
CryoJane Adhesive Slides Electron Microscopy Sciences 62800-4X Multiple suppliers available.

References

  1. Schofield, P. N., Vogel, P., Gkoutos, G. V., Sundberg, J. P. Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Model Mech. 5 (1), 19-25 (2012).
  2. Adissu, H. A., et al. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen. Disease Models and Mechanisms. 7 (5), 515-524 (2014).
  3. Johnson, J. T., et al. Virtual histology of transgenic mouse embryos for high-throughput phenotyping. PLoS Genet. 2 (4), e61 (2006).
  4. Ayadi, A., et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm.Genome. 23 (9-10), 600-610 (2012).
  5. Utreja, A., et al. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthr Cartil. 24 (2), 335-344 (2016).
  6. Dyment, N. A., et al. Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev.Biol. 405 (1), 96-107 (2015).
  7. Lalley, A. L., et al. Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J.Orthop.Res. 33 (11), 1693-1703 (2015).
  8. Breidenbach, A. P., et al. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis. J.Orthop.Res. 33 (8), 1142-1151 (2015).
  9. Ushiku, C., Adams, D., Jiang, X., Wang, L., Rowe, D. Long Bone Fracture Repair in Mice Harboring GFP Reporters for Cells within the Osteoblastic Lineage. J.Orthop.Res. 28 (10), 1338-1347 (2010).
  10. Matthews, B. G., et al. Analysis of asMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J.Bone Miner.Res. 29 (5), 1283-1294 (2014).
  11. Dyment, N. A., Hagiwara, Y., Jiang, X., Huang, J., Adams, D. J., Rowe, D. W. Response of knee fibrocartilage to joint destabilization. Osteoarthritis Cartilage. 23 (6), 996-1006 (2015).
  12. Grcevic, D., et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells. 30 (2), 187-196 (2012).
  13. Hong, S. H., Jiang, X., Chen, L., Josh, P., Shin, D. G., Rowe, D. Computer-Automated Static, Dynamic and Cellular Bone Histomorphometry. J Tissue Sci Eng. Suppl 1, 004 (2012).
  14. Matthews, B. G., Torreggiani, E., Roeder, E., Matic, I., Grcevic, D., Kalajzic, I. Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells. Bone. 84, 69-77 (2016).
  15. Hagiwara, Y., et al. Fixation stability dictates the differentiation pathway of periosteal progenitor cells in fracture repair. J.Orthop.Res. 33 (7), 948-956 (2015).
  16. Jiang, X., et al. Histological analysis of GFP expression in murine bone. J.Histochem.Cytochem. 53 (5), 593-602 (2005).
  17. Nissanov, J., Bertrand, L., Tretiak, O. Cryosectioning distortion reduction using tape support. Microsc.Res.Tech. 53 (3), 239-240 (2001).
  18. Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch.Histol.Cytol. 66 (2), 123-143 (2003).

Play Video

Cite This Article
Dyment, N. A., Jiang, X., Chen, L., Hong, S., Adams, D. J., Ackert-Bicknell, C., Shin, D., Rowe, D. W. High-Throughput, Multi-Image Cryohistology of Mineralized Tissues. J. Vis. Exp. (115), e54468, doi:10.3791/54468 (2016).

View Video