Summary

Количественная оценка зоны сцепления cell-substrate и распределения формы клеток в монолиях клеток MCF7

Published: June 24, 2020
doi:

Summary

В статье описывается количественная оценка 1) размера и количества фокусных спаек и 2) индекса формы клеток и его распределения от конфокальных изображений слияние моноселей клеток MCF7.

Abstract

Методы, представленные здесь количественно некоторые параметры слияния адептов клеток монослой из нескольких соответствующим образом окрашенных конфокальных изображений: прилипание к субстрату в качестве функции числа и размера фокусных спаек, и форма клеток, характеризующаяся индексом формы клетки и другими дескрипторами формы. Фокусные спайки были визуализированы при окрашивании паксилина, а клеточные границы были отмечены стыковым плакоглобином и актином. Методы клеточной культуры и окрашивания являются стандартными; изображения представляют собой единые фокусные плоскости; анализ изображений проводился с использованием общедоступного программного обеспечения для обработки изображений. Представленные протоколы используются для количественной оценки количества и размера фокусных спаек и различий в распределении формы клеток в монослоях, но они могут быть перепрофилированы для количественной оценки размера и формы любой другой клеточной структуры, которая может быть окрашена (например, митохондрии или ядра). Оценка этих параметров имеет важное значение в характеристике динамических сил в адептов клеточного слоя, в том числе клея клеток и актомиозин контрактистойности, которая влияет на форму клеток.

Introduction

Эпителиальные клеточные монослой действуют как коллектив, в котором ячейка-клетка и клеточный субстратный спайка, а также контрактные силы и напряжения представляют важные параметры, и их надлежащий баланс способствует общей целостности блока1,2,3. Таким образом, оценка этих параметров представляет собой способ установить текущее состояние слоя ячейки.

Два описанных здесь метода представляют собой двумерный анализ слияние монослой адептов, эпителиальных клеток (в данном случае линия клеток рака молочной железы MCF7). Анализ проводится с использованием конфокополиальных изображений (одиночных ломтиков) из разных регионов на оси з; базальной области вблизи субстрата для фокусных измерений сцепления (FA) и апкической области для измерения формы клеток. Представленные методы являются относительно простыми и требуют стандартных лабораторных методов и программного обеспечения с открытым исходным кодом. Конфокальной микроскопии достаточно для этого протокола, поэтому она может быть выполнена без использования более специализированной микроскопии TIRF (Total Internal Reflection Fluorescence). Таким образом, протокол может быть реализован в относительно стандартных лабораторных условиях. Хотя точность методов ограничена, они могут различать основные различия в фокусной спайке и форме клеток.

Оба описанных здесь метода состоят из стандартных экспериментальных процедур, таких как культивирование клеток, иммуносументирование, конфокальная визуализация и анализ изображений, выполняемый с помощью ImageJ. Тем не менее, любое программное обеспечение для обработки изображений с соответствующими функциями может быть использовано. Представленные методы могут отслеживать и сравнивать изменения, вызванные фармакологическим лечением или минимальной генетической модификацией. Получение определенных значений не рекомендуется, из-за ограниченной точности этих методов. Два автоматизированных макроса были включены, чтобы облегчить измерения многих изображений.

Protocol

1. Подготовительные шаги Сотовый посев для получения слияние монослой Перед посевом, пальто колодцы 4-колодцы камерной слайд с коллагеном I (или другой компонент ECM выбора). Для покрытия коллагена I, следуйте коммерческому протоколу: https://www.sigmaaldrich.com/technical-documents/articles/biofiles/collagen-product-…

Representative Results

Анализ фокусной адгезииНокдаун гена HAX1 ранее было показано, влияют на фокусные спайки6. Клетки были культивируются на поверхности коллагена I-покрытием для 48 h. Изображения клеток управления MCF7 и клеток MCF7 с нокдауном HAX1 (HAX1 KD) из трех независимых эк…

Discussion

Клеточная и клеточно-субстратная адгеция являются неотъемлемыми атрибутами эпителиальных клеток и играют решающую роль в морфогенезе ткани и эмбриогенезе. В взрослых тканях правильное регулирование механических свойств клеточного слоя имеет решающее значение для поддержания гомео…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана Польским национальным научным центром в рамках гранта No 2014/14/M/N’1/00437.

Materials

Alexa Fluor 594 ThermoFisher Scientific A32740 goat anti-rabbit, 1:500
Ammonium chloride Sigma A9434
BSA BioShop ALB001.500
Collagen from calf skin Sigma C9791-10MG
DAPI Sigma D9542 1:10000 (stock 1 mg/mL in H2O), nucleic acid staining
DMEM + GlutaMAX, 1 g/L D-Glucose, Pyruvate ThermoFisher Scientific 21885-025
FBS ThermoFisher Scientific 10270-136
Junction plakoglobin Cell Signaling 2309S rabbit, 1:400
Laminar-flow cabinet class 2 Alpina standard equipment
MCF7-basedHAX1KD cell line Cell line established in the National Institute of Oncology, Warsaw, described in Balcerak et al., 2019 MCF7 cell line withHAX1knockdown
MCF7 cell line (CONTROL) ATCC ATCC HTB-22 epithelial, adherent breast cancer cell line
Olympus CK2 light microscope Olympus
Paxillin Abcam ab32084 rabbit, 1:250, Y113
PBS ThermoFisher Scientific 10010023
Phalloidin-TRITC conjugate Sigma P1951 1:400 (stock 5 mg/mL in DMSO), actin labeling
PTX Sigma T7402-1MG
TBST – NaCl Sigma S9888
TBST – Trizma base Sigma T1503
Triton X-100 Sigma 9002-93-11
Zeiss LSM800 Confocal microscope Zeiss

References

  1. Li, D. S., Zimmermann, J., Levine, H. Modeling closure of circular wounds through coordinated collective motion. Search Results. 13 (1), 016006 (2016).
  2. Ilina, O., Friedl, P. Mechanisms of collective cell migration at a glance. Journal of Cell Science. 122, 3203-3208 (2009).
  3. Ladoux, B., Mege, R. M. Mechanobiology of collective cell behaviours. Nature Reviews Molecular Cell Biology. 18 (12), 743-757 (2017).
  4. Stossi, F., et al. High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget. 7 (13), 16962-16974 (2016).
  5. Legland, D., Arganda-Carreras, I., Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics. 32 (22), 3532-3534 (2016).
  6. Balcerak, A., et al. HAX1 impact on collective cell migration, cell adhesion, and cell shape is linked to the regulation of actomyosin contractility. Molecular Biology of the Cell. 30 (25), 3024-3036 (2019).
  7. Buskermolen, A. B. C., Kurniawan, N. A., Bouten, C. V. C. An automated quantitative analysis of cell, nucleus and focal adhesion morphology. PLoS One. 13 (3), 0195201 (2018).
  8. Fokkelman, M., et al. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour. Scientific Reports. 6, 31707 (2016).
  9. Horzum, U., Ozdil, B., Pesen-Okvur, D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 1, 56-59 (2014).
  10. Kim, D. H., Wirtz, D. Focal adhesion size uniquely predicts cell migration. FASEB Journal. 27 (4), 1351-1361 (2013).
  11. Pincus, Z., Theriot, J. A. Comparison of quantitative methods for cell-shape analysis. Journal of Microscopy. 227, 140-156 (2007).
  12. Tsygankov, D., et al. CellGeo: a computational platform for the analysis of shape changes in cells with complex geometries. Journal of Cell Biology. 204 (3), 443-460 (2014).
  13. Tiryaki, V. M., Adia-Nimuwa, U., Ayres, V. M., Ahmed, I., Shreiber, D. I. Texture-based segmentation and a new cell shape index for quantitative analysis of cell spreading in AFM images. Cytometry A. 87 (12), 1090-1100 (2015).
  14. Tong, J., et al. Cell micropatterning reveals the modulatory effect of cell shape on proliferation through intracellular calcium transients. Biochimica et Biophysica Acta. 1864 (12), 2389-2401 (2017).
  15. Vartanian, K. B., Kirkpatrick, S. J., Hanson, S. R., Hinds, M. T. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochemical and Biophysical Research Communications. 371 (4), 787-792 (2008).

Play Video

Cite This Article
Wakula, M., Balcerak, A., Smietanka, U., Chmielarczyk, M., Konopiński, R., Grzybowska, E. A. Quantification of Cell-Substrate Adhesion Area and Cell Shape Distributions in MCF7 Cell Monolayers. J. Vis. Exp. (160), e61461, doi:10.3791/61461 (2020).

View Video