Summary

评估从3D多细胞肺肿瘤球体中分离的癌症相关成纤维细胞的线粒体健康

Published: October 21, 2022
doi:

Summary

用肺腺癌细胞、成纤维细胞和单核细胞制备多细胞3D肿瘤球体,然后从这些球体中分离癌症相关成纤维细胞(CAF)。将分离的CAF与正常成纤维细胞进行比较,通过研究线粒体跨膜电位,活性氧和酶活性来评估线粒体健康状况。

Abstract

癌症相关成纤维细胞(CAF)是肿瘤微环境中最丰富的基质细胞之一,可促进肿瘤生长和进展。肿瘤微环境中的复杂性,包括肿瘤分泌组、低度炎症、缺氧和氧化还原失衡,促进了异型相互作用,并允许无活性的常驻成纤维细胞转化为活性 CAF。CAF 在代谢上与正常成纤维细胞 (NF) 不同,因为它们具有更高的糖酵解活性,产生更高水平的活性氧 (ROS),并且过表达乳酸输出剂 MCT-4,导致线粒体通透性过渡孔 (MPTP) 的打开。这里描述了一种方法来分析从多细胞3D肿瘤球体中分离的活化CAF的线粒体健康,该球状体包括人肺腺癌细胞(A549),人单核细胞(THP-1)和人肺成纤维细胞(MRC5)。肿瘤球体以不同的时间间隔分解,并通过磁激活细胞分选分离出CAF。使用JC-1染料评估CAF的线粒体膜电位,通过2’,7′-二氯二氢荧光素二乙酸酯(DCFDA)染色产生ROS以及分离CAF中的酶活性。分析分离CAF的线粒体健康有助于更好地了解反向Warburg效应,也可用于研究CAF线粒体变化的后果,例如代谢通量和相应的肺癌异质性调控机制。因此,本研究提倡了解肿瘤 – 基质相互作用对线粒体健康的影响。它将提供一个平台来检查线粒体特异性候选药物对CAF作为肿瘤微环境中潜在疗法的有效性,从而防止CAF参与肺癌进展。

Introduction

实体瘤由肿瘤微环境(TME)引导的异质细胞群组成,然而,大多数细胞的起源尚未被发现。主要是基质和免疫细胞(成纤维细胞、内皮细胞、单核细胞、巨噬细胞、树突状细胞、B 细胞、T 细胞及其亚群)反映了肺癌、乳腺癌、肾癌和其他实体癌的肿瘤异质性123。了解每种亚型的起源及其转分化潜力对于开发针对这些癌症的先进疗法至关重要。由于肿瘤类型、部位、分期、样本量限制和患者特异性变异性,在人活检中对这种多样化细胞群的分析本身就面临着一些挑战4。因此,需要一个实验模型,该模型不仅可靠,而且可以模拟体内肿瘤状况,证明其是研究肿瘤-基质串扰及其参与疾病病理生理学的理想选择。

三维(3D)多细胞肿瘤球状体(MCTS)培养物是一种有利的 体外 肿瘤模型系统,因为它们与天然对应物相似。与2D细胞培养模型相比,MCTS可以更好地复制实体瘤的各个方面,包括其空间结构,生理反应,可溶性介质的释放,基因表达模式和耐药机制。此外,MCTS的一个主要优点是它可用于研究肿瘤异质性和肿瘤微环境(TME)。悬挂-下降法是开发和分析 MCTS5 最常用的工具。在这种方法中,带有培养基的不同细胞以液滴的形式悬浮,这允许其以相干的3D聚集体方式生长,并且易于检查。该技术很简单;它不需要很多细胞,并且消除了球状体发育所需的特殊底物(如琼脂糖)6。该方法的另一个优点在于其技术的可重复性。此外,该方法还用于共培养混合细胞群,例如内皮细胞和肿瘤细胞,以模拟早期肿瘤血管生成7

本研究采用模拟肺肿瘤微环境的悬挂滴法制备了含有肺腺癌细胞、成纤维细胞和单核细胞的多细胞三维肺肿瘤球体。然后分离癌症相关成纤维细胞(CAF)群体以调查线粒体健康状况。开发这些微球背后的主要思想是分离CAF,因为微球中细胞之间的串扰可以将成纤维细胞转化为肌成纤维细胞样激活的CAF状态。其次,这项研究也可能描述异常的ROS产生和线粒体功能障碍如何驱动正常的成纤维细胞走向更具侵略性的CAF表型。结果发现,在肿瘤球体内组装的成纤维细胞具有肌成纤维细胞特征,ROS活性增加,代谢基因表达诱导增加。该协议强调了肿瘤微环境在激活CAF中的重要性,并且可以成为 体外 生成和研究CAF表型特征的优秀模型。

Protocol

1. 细胞培养 在补充有10S和1%青霉素 – 链霉素的RPMI1640培养基中培养人肺腺癌细胞系A549和人单核细胞系THP-1,在5%CO2的加湿室中。 在补充有10S和1%青霉素 – 链霉素溶液的DMEM培养基中培养MRC-5人肺成纤维细胞,在37°C的加湿室中,在5%CO2。 2. 使用A549肺腺癌细胞系,MRC5成纤维细胞和THP-1单核细胞制备多细胞肿瘤球状体</p…

Representative Results

图1显示了使用三种不同的细胞群-A549(肺腺癌),MRC-5(成纤维细胞)和THP-1(单核细胞)通过悬挂滴法在显微镜下观察到的第7天和第10天多细胞肿瘤球状体的发展。在第7天,球体紧凑而坚硬,直径为260 ± 5.3 μm,在第10天,球体直径为480±7.5μm(图1A上面板,图1B-D)。第7天和第10天的球体是紧密的聚集体,在整个批次…

Discussion

本研究介绍了使用改进的悬挂滴法开发包括肿瘤细胞、基质细胞群(即成纤维细胞)和免疫细胞群(即单核细胞)的多细胞肿瘤球体。成纤维细胞和单核细胞/巨噬细胞是构成肿瘤微环境(TME)的最重要群体之一,它们的存在通常与患者预后不良有关16。当存在于TME中时,成纤维细胞发生转化,表现出特定的癌症相关成纤维细胞(CAF)表型,因为肿瘤微环境线索17</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了印度塞尔维亚妇女卓越奖项目(SB/WEA-02/2017)和印度塞尔维亚-早期职业研究奖项目(ECR/2017/000892)的支持。作者LA和SR承认IIT Ropar和MHRD的研究奖学金。MK感谢ICMR的研究奖学金。

Materials

Antibodies
APC anti-human α-SMA R&D systems Cat# IC1420A
Anti-fibroblast microbeads Miltenyi Biotec Cat# 130-050-601
Cell lines
A549 lung adenocarcinoma cells NCCS Pune
MRC-5 fetal lung fibroblasts ATCC CCL-171
THP-1 Human monocytes NCCS Pune
Chemicals
BSA Himedia Cat# 9048-46-8
2,6-dichloroindophenol (DCPIP) SRL Cat# 55287
Calcein-AM Thermo Fisher Scientific Cat# C3099
DAPI Thermo Fisher Scientific Cat# D1306
DCFDA Sigma Cat# D6883
DMEM Gibco Cat# 11995073
DPBS Gibco Cat# 14190-144
EDTA Thermo fisher scientific Cat# 17892
EGTA SRL Cat# 62858
EZcoun Lactate Dehydrogenase Cell Assay Kit HiMedia Cat# CCK036
FBS Gibco Cat# 10082147
Halt Protease and Phosphatase Inhibitor Cocktail (100X) Thermo Fisher Scientific Cat# 87786
HEPES Thermo Fisher Scientific Cat# 15630080
Horse heart Cytochrome c SRL Cat# 81551
Image-iT Red hypoxia reagent Thermo Fisher Scientific Cat# H10498
JC-1 Dye Thermo Fisher Scientific Cat# T3168
KCl Merck Cat# P9541
MgCl2 Merck Cat# M8266
MOPS Thermo Fisher Scientific Cat# 69824
Nacl Sigma-Aldrich Cat# S9888
NADH MB Grade SRL Cat# 54941
NP-40 Thermo Fisher Scientific Cat# 85124
Penicillin/Streptomycin Gibco Cat# 15140122
Phenazine methosulfate (PMS) SRL Cat# 55782
Propidium iodide Thermo fisher scientific Cat# P1304MP
RPMI 1640 Gibco Cat# 11875093
Single Cell Lysis Kit Thermo Fisher Scientific Cat# 4458235
Sodium ascorbate Merck Cat# A7631
Sodium cyanide Sigma Cat# 205222
Sodium Deoxycholate Thermo Fisher Scientific Cat# 89904
Sodium dodecyl sulphate Sigma-Aldrich Cat# L3771
Sodium succinate hexahydrate SRL Cat# 36313
Sucrose Sigma Cat# S0389
SuperScript VILO cDNA synthesis kit Thermo Fisher Scientific Cat# 11754-050
Triton X-100 Sigma Cat# T8787
Trypsin 0.25% EDTA Gibco Cat# 25200072
Universal SYBR Green Supermix BIO-RAD Cat# 172-5124
Plasticware
MACS LS Columns Miltenyi Biotec Cat# 130-042-401
Equipment
Countess II FL Automated Cell Counter Thermo Fisher Scientific Cat# AMQAF1000
EVOS XL core imaging system Thermo Fisher Scientific Serial Number F0518-1727-0191
LAS X software Leica Microsystems
Leica fluorescent inverted microscope s DMi8 automated S/N 424150)
Midi MACS separator Miltenyi Biotec Cat# 130-042-302

References

  1. Kim, N., et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nature Communications. 11 (1), 1-5 (2020).
  2. Davidson, S., et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Reports. 31 (7), 107628 (2020).
  3. Zhang, Y., et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proceedings of the National Academy of Sciences. 118 (24), (2021).
  4. Bray, L. J., Hutmacher, D. W., Bock, N. Addressing patient specificity in the engineering of tumor models. Frontiers in Bioengineering and Biotechnology. 7, 217 (2019).
  5. Timmins, N. E., Nielsen, L. K. Generation of multicellular tumor spheroids by the hanging-drop method. Tissue Engineering. , 141-151 (2007).
  6. Dituri, F., et al. Complex tumor spheroid formation and one-step cancer-associated fibroblasts purification from hepatocellular carcinoma tissue promoted by inorganic surface topography. Nanomaterials. 11 (12), 3233 (2021).
  7. Arora, L., et al. Development of a multicellular 3D tumor model to study cellular heterogeneity and plasticity in NSCLC tumor microenvironment. Frontiers in Oncology. 12, 881207 (2022).
  8. Nurmik, M., Ullmann, P., Rodriguez, F., Haan, S., Letellier, E. In search of definitions: Cancer-associated fibroblasts and their markers. International Journal of Cancer. 146 (4), 895-905 (2020).
  9. Zhang, Y., et al. HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. Journal of Cellular and Molecular Medicine. 25 (12), 5457-5469 (2021).
  10. Bu, L., et al. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 38 (25), 4887-4901 (2019).
  11. Whitaker-Menezes, D., et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell cycle. 10 (11), 1772-1783 (2011).
  12. Mandujano-Tinoco, E. A., Gallardo-Pérez, J. C., Marín-Hernández, A., Moreno-Sánchez, R., Rodríguez-Enríquez, S. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1833 (3), 541-551 (2013).
  13. Bregman, A. A. . Laboratory Investigations in Cell and Molecular Biology. , (2002).
  14. Berry, E. A., Trumpower, B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Analytical Biochemistry. 161 (1), 1-15 (1987).
  15. Avagliano, A., et al. Metabolic reprogramming of cancer associated fibroblasts: the slavery of stromal fibroblasts. BioMed Research International. , (2018).
  16. Lorusso, G., Rüegg, C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochemistry and Cell Biology. 130 (6), 1091-1103 (2008).
  17. Liu, T., Zhou, L., Li, D., Andl, T., Zhang, Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Frontiers in Cell and Developmental Biology. 7, 60 (2019).
  18. Sebastian, A., et al. Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers. 12 (5), 1307 (2020).
  19. Elyada, E., et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discovery. 9 (8), 1102-1123 (2019).
  20. Ganguly, D., et al. Cancer-associated fibroblasts: Versatile players in the tumor microenvironment. Cancers. 12 (9), 2652 (2020).
  21. Harryvan, T. J., Verdegaal, E. M., Hardwick, J. C., Hawinkels, L. J., vander Burg, S. H. Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies. Journal of Clinical Medicine. 8 (11), 1989 (2019).
  22. Santi, A., Kugeratski, F. G., Zanivan, S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics. 18 (5-6), 1700167 (2018).

Play Video

Cite This Article
Arora, L., Kalia, M., Roy, S., Pal, D. Assessment of Mitochondrial Health in Cancer-Associated Fibroblasts Isolated from 3D Multicellular Lung Tumor Spheroids. J. Vis. Exp. (188), e64315, doi:10.3791/64315 (2022).

View Video