Summary

使用CRISPR SunTag-p65-HSF1激活系统研究米色脂肪生物学和代谢

Published: January 06, 2023
doi:

Summary

该协议提出了在脂肪细胞(AdipoSPH)中使用CRISPR SunTag-p65-HSF1(SPH)作为腺相关病毒(AAV)的替代策略来研究米色脂肪生物学。 体内 注射靶向内源性Prdm16基因的携带AAV的sgRNA足以诱导米色脂肪发育并增强产热基因程序。

Abstract

成簇规则间隔短回文重复(CRISPR)技术引发了生物学的革命,最近的工具已经远远超出了最初描述的基因编辑。CRISPR活化(CRISPRa)系统将催化无活性的Cas9(dCas9)蛋白与不同的转录模块相结合,以诱导内源性基因表达。SunTag-p65-HSF1(SPH)是最近开发的一种CRISPRa技术,它将协同激活介质(SAM)的成分与SunTag激活剂相结合。该系统通过设计定制的单向导RNA(sgRNA)允许单个或多个基因的过表达。在这项研究中,先前开发的SPH小鼠用于在脂肪细胞(脂联素Cre谱系)中产生表达SPH的条件小鼠,称为AdipoSPH。为了诱导白色至米色脂肪(褐变)表型,将携带靶向内源性Prdm16基因(一种与棕色和米色脂肪发育相关的成熟转录因子)的sgRNA的腺相关病毒(AAV)注射到腹股沟白色脂肪组织(iWAT)中。该小鼠模型诱导内源性Prdm16的表达并激活产热基因程序。此外, 体外 SPH诱导的Prdm16过表达增强了米色脂肪细胞的耗氧量,表型复制了先前Prdm16转基因小鼠模型的结果。因此,该协议描述了一种用于研究脂肪组织生物学的多功能,经济高效且具有时间效率的小鼠模型。

Introduction

米色(或卤状)脂肪细胞是解偶联表达蛋白 1 (UCP1) 和富含线粒体的脂肪细胞,位于白色脂肪组织 (WAT) 库中。米色脂肪来自脂肪细胞祖细胞或成熟白色脂肪细胞的亚群,以响应寒冷暴露和其他刺激12。米色脂肪细胞可以以UCP1依赖性或独立的方式将能量转化为热量3。除了产热功能如何,米色脂肪还可以通过其他方式改善代谢健康,例如脂肪因子的分泌和抗炎和抗纤维化活性。对小鼠和人类的研究表明,米色脂肪的诱导改善全身葡萄糖和脂质稳态3。然而,尽管近年来我们对米色脂肪生物学的了解发展迅速,但其大部分代谢益处和相关机制仍未完全了解。

簇状规则间隔短回文重复序列(CRISPR)首先在真核细胞中被描述为能够通过Cas9蛋白45的核酸酶活性在基因组的特定位点产生双链断裂(DSB)的工具。Cas9由合成的单向导RNA(sgRNA)引导,靶向特定的基因组区域,从而产生DNA DSB。除了使用核酸酶Cas9进行编辑外,CRISPR-Cas9技术还发展成为序列特异性基因调控工具6。催化无活性Cas9蛋白(dCas9)的发展和能够增强基因表达的转录模块的结合产生了CRISPR激活(CRISPRa)工具。已经出现了几种CRISPRa系统,例如VP6478,协同激活介质(SAM)9,SunTag10,11,VPR 12,13和SunTag-p65-HSF1(SPH)14它们结合了SAM和SunTag激活剂的组件。最近已经证明,与其他CRISPRa系统相比,使用SPH诱导的N2a神经母细胞和原代星形胶质细胞中神经源性基因的表达更高14,这表明SPH是一种有前途的CRISPRa工具。

在这里,我们利用先前开发的SPH小鼠14 ,使用脂联素Cre谱系(AdipoSPH)生成在脂肪细胞中特异性表达SPH的条件小鼠模型。使用携带靶向内源性Prdm16基因的gRNA的腺相关病毒(AAV),诱导腹股沟WAT(iWAT)的褐变(白色到米色转换)以增加产热基因程序的表达。此外, 体外 Prdm16过表达增加了耗氧量。因此,该协议提供了一种多功能的SPH小鼠模型,用于探索脂肪组织内米色脂肪发育的机制。

Protocol

动物研究是根据坎皮纳斯大学实验动物护理和使用指南(协议CEUA #5810-1/2021)进行的。 1. 分子克隆 单向导RNA(sgRNA)的设计使用CHOPCHOP(https://chopchop.cbu.uib.no/ 提供)或任何其他合适的工具设计用于CRISPR激活的sgRNA。使用以下参数设计靶向Prdm16基因的sgRNA:靶标:Prdm16;在:肌肉肌肉;使用:Crispr/Cas9;对于:激活。注意:为每个感兴趣的区域设计sgRNA,…

Representative Results

AdipoSPH小鼠是通过培育SPH和Adipoq-Cre小鼠品系开发的。两种小鼠品系均处于杂交C57BL6J-DBA / 2J背景中(根据商业供应商;见 材料表)。SPH小鼠谱系最初由Zhou等人描述14。 通过 AdipoSPH介导的Prdm16过表达实现体内米色脂肪细胞发育为了评估本研究中描述的模型在 体内发育米色脂肪细胞的能力,将携带靶向Prdm16基…

Discussion

CRISPR技术最有用的非编辑应用之一是通过使用CRISPRa系统激活内源性基因来询问基因功能6。SPH是一种强大的CRISPRa,最初被描述为通过靶向几个神经源性基因来诱导星形胶质细胞转化为活跃的神经元14。在这项研究中,AdipoSPH被证明是通过激活脂肪细胞中内源性Prdm16的表达来研究米色脂肪生物学的合适工具。SPH诱导的Prdm16在脂肪细胞中的过表达导致产热基因程序的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢Unicamp的Centro Multidisciplinar para Investigação Biológica na Área da Animais de Laboratório(Cemib)对AdipoSPH小鼠的产生,免疫代谢和细胞信号实验室以及国家应用于细胞生物学的光子学科学技术研究所(INFABIC)的所有实验支持。我们感谢圣保罗研究基金会(FAPESP)的财政支持:2019/15025-5;2020/09308-1;2020/14725-0;2021/11841-2.

Materials

3,3',5-Triiodo-L-thyronine Sigma-Aldrich T2877
3-Isobutyl-1-methylxanthine Sigma-Aldrich I5879
AAVpro 293T Cell Line Takarabio 632273
Amicon Ultra Centrifugal Filter Merckmillipore UFC510008 100 KDa
Dexamethasone Sigma-Aldrich D1756
Dulbecco's Modification of Eagles Medium (DMEM) Corning 10-017-CV
Dulbecco's Modified Eagle Medium (DMEM) F-12, GlutaMAX™ supplement Gibco 10565-018 high concentrations of glucose, amino acids, and vitamins
Dulbecco's phosphate buffered saline (DPBS) Sigma-Aldrich D8662
Excelta Self-Opening Micro Scissors Fisher Scientific 17-467-496
Fetal bovine serum Sigma-Aldrich F2442
Fisherbrand Cell Scrapers (100 pk) Fisher Scientific 08-100-241
Fisherbrand High Precision Straight Tapered Ultra Fine Point Tweezers/Forceps Fisher Scientific 12-000-122
Fisherbrand Sharp-Pointed Dissecting Scissors Fisher Scientific 08-940
Glycerol Sigma-Aldrich G5516
HEPES Sigma-Aldrich H3375-25G
Hexadimethrine bromide (Polybrene) Sigma-Aldrich H9268
Indomethacin Sigma-Aldrich I7378
Insulin Sigma-Aldrich I9278
LigaFast Rapid DNA Ligation System Promega M8225
Maxiprep purification kit  Qiagen 12162
Microliter syringe Hamilton 80308 Model 701
NEB 10-beta/Stable  New England Biolabs C3019H E. coli competent cells
pAAV2/8  Addgene  112864
pAAV-U6-gRNA-CBh-mCherry Addgene  91947
pAdDeltaF6  Addgene  112867
PEG 8000 Sigma-Aldrich 89510
Penicillin/streptomycin Gibco 15140-122
Polyethylenimine Sigma-Aldrich 23966 Linear, MW 25000
Povidone-iodine Rioquímica 510101303 Antiseptic
Rosiglitazone Sigma-Aldrich R2408
SacI enzyme New England Biolabs R0156
Surgical Design Premier Adson Forceps Fisher Scientific 22-079-741
Syringe Hamilton 475-40417
T4 DNA Ligase Promega M180B
T4 DNA ligase buffer  New England Biolabs B0202S
T4 PNK enzyme kit New England Biolabs M0201S
Tramadol Hydrochloride SEM 43930
Vidisic Gel  Bausch + Lomb  99620

References

  1. Wang, W., Seale, P. Control of brown and beige fat development. Nature Reviews Molecular Cell Biology. 17 (11), 691-702 (2016).
  2. Wu, J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150 (2), 366-376 (2012).
  3. Cohen, P., Kajimura, S. The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology. 22 (6), 393-409 (2021).
  4. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  5. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823-826 (2013).
  6. Dominguez, A. A., Lim, W. A., Qi, L. S. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology. 17 (1), 5-15 (2016).
  7. Gilbert, L. A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154 (2), 442-451 (2013).
  8. Perez-Pinera, P., et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods. 10 (10), 973-976 (2013).
  9. Konermann, S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517 (7536), 583-588 (2015).
  10. Gilbert, L. A., et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159 (3), 647-661 (2014).
  11. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159 (3), 635-646 (2014).
  12. Chavez, A., et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods. 12 (4), 326-328 (2015).
  13. Chavez, A., et al. Comparison of Cas9 activators in multiple species. Nature Methods. 13 (7), 563-567 (2016).
  14. Zhou, H., et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nature Neuroscience. 21 (3), 440-446 (2018).
  15. Fripont, S., Marneffe, C., Marino, M., Rincon, M. Y., Holt, M. G. Production, purification, and quality control for adeno-associated virus-based vectors. Journal of Visualized Experiments. (143), e58960 (2019).
  16. Negrini, M., Wang, G., Heuer, A., Björklund, T., Davidsson, M. AAV production everywhere: a simple, fast, and reliable protocol for in-house aav vector production based on chloroform extraction. Current Protocols in Neuroscience. 93 (1), 103 (2020).
  17. Aune, U. L., Ruiz, L., Kajimura, S. Isolation and differentiation of stromal vascular cells to beige/brite cells. Journal of Visualized Experiments. (73), e50191 (2013).
  18. Wang, Q., et al. Post-translational control of beige fat biogenesis by PRDM16 stabilization. Nature. 609 (7925), 151-158 (2022).
  19. Oeckl, J., Bast-Habersbrunner, A., Fromme, T., Klingenspor, M., Li, Y. Isolation, culture, and functional analysis of murine thermogenic adipocytes. STAR Protocols. 1 (3), 100118 (2020).
  20. Cohen, P., et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 156 (1-2), 304-316 (2014).
  21. Harms, M., Seale, P. Brown and beige fat: development, function and therapeutic potential. Nature Medicine. 19 (10), 1252-1263 (2013).
  22. Divakaruni, A. S., Jastroch, M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nature Metabolism. 4 (8), 978-994 (2022).
  23. Seale, P., et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of Clinical Investigation. 121 (1), 96-105 (2011).
  24. Valet, P., Tavernier, G., Castan-Laurell, I., Saulnier-Blache, J. S., Langin, D. Understanding adipose tissue development from transgenic animal models. Journal of Lipid Research. 43 (6), 835-860 (2002).
  25. Bates, R., Huang, W., Cao, L. Adipose tissue: an emerging target for adeno-associated viral vectors. Molecular Therapy. Methods & Clinical Development. 19, 236-249 (2020).
  26. Wang, D., Tai, P. W. L., Guangping, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery. 18 (5), 358-378 (2019).
  27. Colella, P., Ronzitti, G., Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Molecular Therapy. Methods & Clinical Development. 8, 87-104 (2018).
  28. Deshmukh, A. S., et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metabolism. 30 (5), 963-975 (2019).
  29. Sponton, C. H., et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO reports. 21 (9), 49828 (2020).
check_url/64849?article_type=t

Play Video

Cite This Article
Valdivieso-Rivera, F. B., de Oliveira Furino, V., Sponton, C. H. Investigation of Beige Fat Biology and Metabolism Using the CRISPR SunTag-p65-HSF1 Activation System. J. Vis. Exp. (191), e64849, doi:10.3791/64849 (2023).

View Video