Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

CLON-Gおよび in vitro 自然死アッセイによる好中球の寿命延長

Published: May 12, 2023 doi: 10.3791/65132
* These authors contributed equally

Summary

このプロトコルは、好中球の寿命を5日以上に延長するためのCLON-Gの調製を詳述し、フローサイトメトリーと共焦点蛍光顕微鏡で好中球死を評価するための信頼できる手順を提供します。

Abstract

好中球の平均寿命は24時間未満であり、好中球に関する基礎研究と好中球研究の適用が制限されています。私たちの以前の研究は、複数の経路が好中球の自然死を媒介する可能性があることを示しました。カスパーゼ-リソソーム膜透過-酸化-ネクロトーシス阻害と顆粒球コロニー刺激因子(CLON-G)を同時に標的としたカクテルを開発し、好中球機能を大幅に損なうことなく好中球の寿命を5日以上に延長しました。同時に、好中球死を評価および評価するための信頼性が高く安定したプロトコルも開発されました。本研究では、CLON-Gが in vitro で好中球の寿命を5日以上に延ばすことができることを示し、FACSと共焦点蛍光顕微鏡法を用いて好中球の寿命を延ばすことを示しました。このレポートでは、CLON-Gの調製手順を紹介し、好中球の研究とその後の好中球死の調査に使用できる好中球の in vitro 自然死アッセイを紹介し、好中球コミュニティに信頼できるリソースを提供します。

Introduction

好中球は、豊富な細胞質顆粒、ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)オキシダーゼ、抗菌酵素、および侵入微生物から保護するさまざまな細胞小器官の兵器庫を含むことが知られています。さらに、それらは非常に運動性が高く、炎症部位に動員される最初の細胞であり、好中球が自然免疫系の防御の第一線であることを意味します1,2。したがって、顆粒球輸血療法は、好中球免疫を一過性に高める好中球減少症関連感染症の有望な臨床治療法となっています3,4,5。最近の発見は、好中球が多くの生理病理学的シナリオにおいて多面的なエフェクターとしても機能することを明確に示しています6。好中球の平均寿命は24時間未満であり、したがって、好中球の基礎研究と好中球研究の適用は、安定した遺伝子操作と長期保存に関連する制限のために非常に困難です7,8,9,10,11 .HL-60、PLB-985、NB4、かすみ-1、人工多能性幹細胞など、好中球機能を部分的に示すことができる細胞株がいくつかあります12。これらの細胞株は、効果的な遺伝子編集と凍結保存を達成することができます。しかし、それらは依然として一次好中球とはかなり大きく異なるため、好中球機能を忠実に再現することはできません13。したがって、この分野の研究のほとんどは、依然として新たに単離された一次好中球に依存しています。この分野は、好中球の特定の遺伝子機能を調査するために、高価で時間のかかる条件付きノックアウトマウスの生成に依存していますが、現在、ヒトモデルは存在しません。

好中球死に関与する不均一なプロセスと、これらのプロセスを調節する複数の経路の探索に力を入れた結果14,15、CLON-G(カスパーゼ-リソソーム膜透過処理-酸化-ネクロトーシス阻害と顆粒球コロニー刺激因子)と呼ばれる新しい治療法が最近報告されました16。.CLON-Gは、Q-VD-oph(キノリル-バリル-O-メチルアスパルチル-[-2,6-ジフルオロフェノキシ]-メチルケトン)、Hsp70(ヒートショックタンパク質70)、DFO(デフェロキサミン)、NAC(N-アセチルシステイン)、Nec-1(ネクロスタチン-1)、およびG-CSF(顆粒球コロニー刺激因子)で構成されています。好中球の自然死は、アポトーシス、ネクロプトーシス、パイロトーシスなどの複数の経路によって媒介されます。Q-VD-ophは、カスパーゼ1、カスパーゼ3、カスパーゼ8、およびカスパーゼ9を標的とすることにより、汎カスパーゼ阻害剤としての好中球のアポトーシスを阻害します17。好中球ネクロトーシスは、受容体相互作用タンパク質キナーゼ-1(RIPK1)と混合系統キナーゼドメイン様タンパク質(MLKL)18が関与するシグナル伝達経路に依存しています。RIPK1阻害剤として、Nec-1は好中球のネクロトーシスを阻害します。Hsp70とDFOはリソソーム膜透過処理(LMP)を阻害し、好中球のアポトーシス19とパイロトーシス20を誘導する可能性があります。活性酸素種(ROS)は、LMP19とアポトーシス21を媒介し、生存シグナル22を阻害することにより、好中球の死に重要な役割を果たします。ROSの蓄積を減らすことができる抗酸化物質として、NACは好中球の死を遅らせます。成長因子として、G-CSFは好中球生存シグナルを活性化し、カルパイン誘発アポトーシスを阻害します23,24。複数の好中球の自然死経路を同時に標的とすることにより、好中球の寿命は、その機能を損なうことなく、効果的に5日以上に延長することができます。CLON-G治療は、好中球の保存、輸送、遺伝子操作の可能性を広げ、好中球コミュニティでの研究を加速することができます。一方、好中球死の知識に基づいて、現在承認されている細胞死アッセイのプロトコルは好中球に予期しない損傷を引き起こす可能性があるため14、これらのプロトコルは好中球研究により適したものに改良されています。このレポートは、CLON-Gによる好中球培養の詳細なプロトコルと、フローサイトメトリーと蛍光イメージングを使用したマウス好中球のin vitro細胞死アッセイを提供します。CLON-Gは、マウスとヒトの両方の好中球に有効です。ただし、ここでは、このプロトコルを簡略化するためにマウスのサンプルを示します。NACの濃度は、マウス好中球で1 mM、ヒト好中球で10 μMです。Hsp70は種特異的であるため、好中球の供給源に応じて利用する必要があります。このプロトコルでは、好中球が末梢血または骨髄から単離されているかどうか、およびそれらがどのように単離されるかは関係ありません。

本研究では、骨髄から約1 x 10 7-1.5 x10 7好中球を得ることができるため、マウス骨髄から好中球を単離し、1 x 10 6好中球のみを末梢血から単離することができます8-12週齢のC57BL /6マウス(性別のいずれか)。勾配遠心分離は、FACS選別またはMACS選別の機械的刺激による損傷および活性化の可能性を回避するために実施された。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

ボストン小児病院および州立実験血液学重点研究所(SKLEH)動物管理および使用委員会は、すべての手順を承認および監視しました。 図1 は、CLON-Gによる好中球培養および インビトロ 死アッセイのフローチャートを示す。

1. CLON-Gによる好中球寿命延長

注意: 記載されているすべての操作と材料は無菌でなければなりません。すべてのソリューションが適切に混合され、均等に分散されていることを確認してください。

  1. CLON-Gコンポーネントの保存
    1. 973.7 μLのジメチルスルホキシド(DMSO)を加えて、50 mgのQ-VD-oph( 材料の表を参照)を最終濃度100 mMに溶解し、混合物が透明になるまで液体をピペットで送ります。チューブあたり50 μLを分注し、-20°Cで保存します。
      注意: DMSOは有害な化学液体です。白衣、ゴーグル、マスクを着用して、皮膚への接触、アイコンタクト、吸入を避けてください。
    2. Hsp70( 材料の表を参照)を4°Cで解凍し、バイアル内の内容物をスピンダウンします。氷上でチューブあたり1 μLのHsp70を分注し、-80°Cで保存します。
      注:Hsp70はタンパク質です。安定を保つには超低温保存が必要です。凍結融解サイクルを避けてください。
    3. 1 mgのDFO( 材料の表を参照)を7.61 mL RPMI 1640に溶解し、200 μMのストックを得ます。 チューブあたり500 μLを分注し、-20°Cで保存します。
    4. 0.1 gのNAC( 材料の表を参照)を2.5 mLのRPMI 1640と15 mLの遠沈管に溶解し、NaOHでpHを7〜7.4に調整します。RPMI 1640を最終容量3.06 mLに加え、200 mM NACストックを作成します。0.2μmのろ過ユニットでろ過します。チューブあたり500 μLを分注し、-20°Cで保存します。
      注:この高濃度でNACを溶解することは容易ではなく、ボルテックスはそれを溶解するのに役立ちます。RPMI 1640のフェノールレッドはpHの完全な指標です。NACが溶解したばかりの場合、色は黄色がかっています。ピンクがかった色になるまで調整してください。NACストック溶液は、-20°Cで最大1ヶ月間安定です。
    5. 10 mgのNec-1( 材料の表を参照)を1.8 mLのDMSOで20 mMに溶解し、透明になるまでピペットで固めます。チューブあたり50 μLを分注し、-20°Cで保存します。 光から保護してください。
    6. 250 μgのG-CSF( 材料の表を参照)を1.25 mLのRPMI 1640で200 μg / mLに溶解します。チューブあたり50 μLを分注し、4°Cで保存します。
  2. 2x CLON-G培地の調製
    1. 基本メディアを準備します。39.5 mLのRPMI 1640、10 mLのウシ胎児血清(FBS)、および0.5 mLのペンストレプ(抗生物質)を50 mLチューブに加え、20%FBSおよび1%PSを基本培地とするRPMI 1640を作成します。
      注:この高濃度のFBSは、好中球の長期培養を提供するために使用され、5日を超える場合があります。培養時間が1〜2日であれば、10%〜15%FBSで十分です。
    2. CLON-G成分のすべてのストック溶液を氷上で解凍します。
    3. 606 μLの基本培地を加えて、1 μLのHsp70を20 μMに希釈します。9 μLの基本培地を加えて、1 μLの200 μg/mL G-CSFを20 μg/mLに希釈します。
    4. 976 μLの塩基性培地を15 mLの遠沈管に加えます。1 μLのQ-VD-oph(100 mM)、10 μLのDFO(200 μM)、1 μLのHsp70(20 μM)、10 μLのNAC(200 mM)、1 μLのNec-1s(20 mM)、および1 μLのG-CSF(20 μg/mL)を加えて、1 mLの2x CLON-G培地を作製する。
      注:2x CLON-G培地は、調製後すぐに使用してください。2x CLON-Gを一時的に4°Cで保管することができます。 残った20μM Hsp70は廃棄する必要があります。
  3. 好中球培養
    1. マウス好中球を勾配遠心分離により単離し、前回の報告25に続く。単離したマウス好中球を基本培地(100万細胞/100 μL)に再懸濁します。
      注意: 好中球を穏やかに取り扱うことにより、好中球を活性化することは避けてください。プロセス全体を通して発泡を避けてください。
    2. 24ウェル非組織培養プレート( 材料の表を参照)に500 μLの2x CLON-G培地、400 μLの基本培地、および100 μLの細胞懸濁液を加え、穏やかに3〜4回ピペットで留めます。
      注:2x CLON-G培地中の高濃度の成分は、好中球を損傷する可能性があります。基本メディアなしでそれらを一緒に追加することは避けてください。非組織培養培養プレートは好中球の接着を避けるために必要である。
    3. 培養プレートを37°C、5%CO2 インキュベーターにスムーズに入れます。
      注:7日以内に細胞培地を交換する必要はありません。CLON-G組成物の最終濃度は、50 μM Q-VD-Oph、1 μM DFO、10 pM Hsp70、1 mM NAC、10 μM Nec-1 s、および10 ng/L G-CSFです。
    4. 培養した好中球をライトギムザ化合物染色剤(材料表参照)で染色し、光学顕微鏡で分析します(図2A-D)。あるいは、APC−CD11bおよびPE−Cy7−Ly6G抗体で染色し、前述のようにフローサイトメトリー(図2E−I)で分析する26

2. 好中球の in vitro 自然死アッセイ

  1. フローサイトメトリー解析
    1. 単離した好中球を基本培地中で100万細胞/mLの密度で37°C、5%CO2で培養します。24穴培養プレートは非組織培養である。ウェルあたり1 mLの細胞培地を追加します。
    2. 1 gのCaCl2 を45 mLの生理食塩水に溶解し、200 mM CaCl2を作ります。0.2μmのろ過ユニットでろ過します。4°Cで保存してください。
    3. 染色ミックスを準備します。サンプルあたり7 μLの生理食塩水を1.5 mLチューブに加え、0.4 mg/mLのFITC-アネキシン-V、0.5 mg/mLのヨウ化プロピジウム(PI)、および200 mM CaCl2 溶液をサンプルあたりそれぞれ1 μL加えます。よく混ぜる。調製後すぐに溶液を使用してください。
    4. 細胞培地を5〜7回穏やかにピペットでよく混合した後、目的の時点で100 μLをフローサイトメトリーチューブに移します。
      注意: プロセス全体を通して発泡を避けてください。
    5. 渦カウントビーズ( 材料表を参照)をよく混ぜます。よく混合した計数ビーズ10 μLをステップ2.1.4と同じフローサイトメトリーチューブにピペットで入れます。
    6. 調製した染色ミックス(ステップ2.1.3)をフローサイトメトリーチューブに10 μL加えます。光を避けて室温で5分間インキュベートします。
    7. 100 μLの生理食塩水をチューブに加え、よく混合して、カウントビーズとセルが均一に分布するようにします。
    8. 細胞培地のフローサイトメトリー解析を実行します。~400イベント/秒の低速で細胞を収集します。APC-PE-Cy7-細胞をFSC-AおよびSSC-Aにゲートし、培地FSC-AおよびSSC-A位置を有するインタクト細胞をFITCアネキシンVおよびPE-PIにゲートします。アネキシン-V-PI-集団は健康な細胞として分類されます。
      注:次の式は、サンプルあたりの健康な細胞の総数と好中球の生存率を決定します。
      サンプルあたりの健常細胞総数27 = (1,000/カウントビーズ数) × アネキシン-V-PI集団数 × 10
      好中球の生存率=指示された時間における健康な細胞の総数/時間ゼロにおける健康な細胞の総数
  2. 蛍光画像アッセイ
    1. 単離した好中球を、37°Cの基本培地で100万細胞/mLの密度で、共焦点プレートで5%CO2 をプレートあたり2 mLの細胞培地で培養します。
      注:共焦点蛍光顕微鏡は最高の画質を持っていますが、この実験をサポートするには488/561 / DICチャンネルを備えた蛍光顕微鏡で十分です。
    2. 指定された時点でプレートをそっと取り出します。0.4 mg/mL FITCアネキシン-V、0.5 mg/mL PI、および200 mM CaCl2 をそれぞれ10 μLずつプレートに均等に加えます。室温で5分間染色します。
      注意: プロセス全体を通して揺れを避けてください。染色剤を均一かつ穏やかに追加します。
    3. 20倍の対物レンズを備えた共焦点蛍光顕微鏡を使用して、488(annexin-V)/561(PI)/DICチャネルで蛍光画像をキャプチャします( 材料表を参照)。488チャンネルの露光時間を500ms、561チャンネルの露出時間を200ms、DICチャンネルの露出時間を100msに設定します。プレートごとに5〜10個のランダムな領域を選択します。細胞の種類は、以前に公開されたレポート14で定義されています。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

CLON-G処理好中球のライト-ギムザ染色形態(図2A-D)およびFACS表現型(図2E-J)は影響を受けなかった。24時間でのCLON-G処理好中球の生存率は、フローサイトメトリー分析(図3)および蛍光画像アッセイ(図4)に基づいて約90%+でした。生存率の低下は、不適切な保管、CLON-G成分の不適切な濃度、または出発点単離好中球の質の低下に起因する可能性があります。基本培地で24時間培養した未処理好中球のフローサイトメトリー分析は、これらの好中球がアネキシンV陽性集団を有することを示した(図3B)。この集団の損失は、細胞培地中のエチレンジアミン四酢酸(EDTA)が原因である可能性があります。基本培地で24時間培養した好中球の蛍光画像には、膨化細胞が含まれているはずです(図4Aの白い矢印)。膨らんだ細胞の損失は、共焦点プレートの振とうまたはピペッティングに起因する可能性があります。

Figure 1
図1:CLON-Gによる好中球培養と in vitro 死アッセイのフローチャートこの図の拡大版を表示するには、ここをクリックしてください。

Figure 2
図2:CLON-G処理マウス好中球の形態と細胞表面マーカー表現型。培養後に細胞を(A-D)ライトギムザ化合物染色剤で染色し、40倍対物レンズを用いた顕微鏡検査で評価するか、(E-I)APC-CD11bおよびPE-Cy7-Ly6G抗体で染色し、フローサイトメトリーで分析しました。(J)示された時点でのCD11b+細胞とLy6G+細胞の比率を統計的に分析した。スケールバーは10μmです。データは、3回の実験のSD±平均値として提示される。ns = 対応するグループと比較して統計的に有意な差はありません。この図の拡大版を表示するには、ここをクリックしてください。

Figure 3
図3:CLON-G処理マウス骨髄好中球のフローサイトメトリー解析 。 (A)ゲーティング戦略、(B)代表的な結果、および(C)24時間培養後の好中球の生存率。データは、3回の実験のSD±平均値として提示される。**P <対応するグループと比較して0.001です。 この図の拡大版を表示するには、ここをクリックしてください。

Figure 4
図4:蛍光画像アッセイに基づく好中球死の代表的な結果。好中球死は、(A)塩基性培地で24時間またはCLON-Gで24時間、(C)3日間、または(D)5日間培養した後。培養後、細胞をFITC-アネキシン-V(緑)およびPI(赤)で染色し、共焦点蛍光顕微鏡で評価しました。スケールバーは40μmです。 この図の拡大版を表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

好中球は自然免疫と適応免疫に重要な役割を果たしており、その恒常性は厳密に制御されています。好中球は、ヒト末梢血中に最も豊富な白血球であり、堅牢で速い代謝回転を有する。健康な成人は骨髄から毎日1 x 109好中球/ kgを放出することができます28。したがって、好中球の死はこの分野の不可解な謎の1つになり、好中球をよりよく理解するために多くの努力が払われてきました。カスパーゼ29303132LMP 33、ROS212233、壊死34、3536、37、および壊死症1838がこれらの不均一なプロセスに関与していることが証明されています。GM-CSF 24およびG-CSF23は、抑制された機能で好中球の寿命を約24時間に延長することができます。CLON-Gは、すべての既知の好中球自然死メカニズムを標的としています。私たちの知る限り、CLON-Gは現在、機能を損なうことなくin vitroで好中球の寿命の最長の延長を提供しています。

CLON-Gによる好中球培養から最良の結果を得るには、いくつかの注意点を考慮する必要があります。前回の薬理学的スクリーニング16では、CLON-G成分の正確な濃度が成功の鍵であり、したがって、調製中に間違いを犯さないようにし、それらを適切に保存するように努めるべきであることが強調されました。好中球の操作と精製に関しては、好中球を活性化して殺すのは簡単です。したがって、プロセス全体を通して穏やかに処理し、分離したら培養する必要があります。それらは細胞濃度、培養プレートの状態、温度、およびpHに敏感です。このプロトコルを変更するときは注意が必要です。 in vitro 死アッセイに関して、以前の結果は、自然死した好中球が機械的な力に耐えられない膨らんだ細胞に膨潤することを示した。スピンダウン、ピペッティング、および洗浄は好中球の数を減少させ、標準的な結合バッファーをCaCl2 溶液で置き換えることは、このプロセスを単純化し、好中球の正確な描写を確実にすることができる14。同じ実験の技術的な重複間の不一致は、操作中の発泡に起因する可能性があります。独立した実験間の違いは、好中球の純度および鮮度の変化によるものかもしれない39

CLON-Gは、既知の経路と対応する阻害化学物質を組み合わせて、自然好中球死を防ぎます。しかし、好中球死を媒介する複雑な経路については、まだ完全には理解されていないため、この分野の核心的な問題は残っています。CLON-G処理好中球の死は避けられない。したがって、CLON-Gにはまだ改善の余地があります。CLON-Gの成分に関しては、最良の選択は、CLON-Gで処理された好中球の臨床応用の可能性を広げるために臨床的に適用される薬です。ただし、Q-VD-ophおよびRec-1は研究専用であり、それらに焦点を当てた臨床試験は現在利用できません。したがって、代替化合物は臨床応用に必要である。

CLON-Gは、好中球の寿命を5日以上に延長することで、好中球研究の無限の可能性を解き放つことができます。この拡張ウィンドウにより、CLON-Gに基づいて観察、遺伝子操作、長期保存、輸送、および凍結保存を開発することができます。人件費、時間費、お金代が大幅に削減され、新しい研究者の参入障壁が低くなります。CLON-Gは、顆粒球輸血療法などの好中球の臨床応用を促進することもできます。化学療法後の好中球減少性感染症は、癌および造血器悪性腫瘍に苦しむ患者の主要な死因です40、41424344これらの患者を支援する代替療法として大きな可能性を秘めている顆粒球輸血療法は、好中球の寿命が短いために厳しく制限されています45。顆粒球輸血の現在のプロセスフローは、好中球の寿命よりも長くかかり、輸血された好中球は第一選択の免疫細胞としての有効性を失います。CLON-G治療は、好中球感染患者の無数の命を救い、抗生物質の過剰使用を軽減するのに役立つ可能性のある顆粒球輸血の準備に十分な時間を提供します。同時に、好中球死アッセイのための本プロトコルは、好中球の状態を正確に実証し、実験結果の再現性を向上させることができます。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者らは、この研究は利益相反がない状態で行われたと宣言しています。

Acknowledgments

このプロジェクトは、細胞生態系イノベーション基金の海河研究所(22HHXBSS00036、22HHXBSS00019)、中国医学科学院(CAMS)医学イノベーション基金(2021-I2M-1-040、2022-I2M-JB-015)、中央大学特別研究基金、北京ユニオン医科大学(3332022062)、および四川省科学技術支援プログラム(NO.2021YJ0480)の支援を受けました。

Materials

Name Company Catalog Number Comments
0.2 µm syringe filter Pall Corporation 4612 Filtrate prepared CLON-G components.
1.5 mL micro centrifuge tube LABSELECT MCT-001-150 Lab consumable.
15 mL Centrifuge Tubes LABSELECT CT-002-15 Lab consumable.
24 well cell culture plate Falcon 351147 Neutrophil culture plate.
50 mL Centrifuge Tubes LABSELECT CT-002-50 Lab consumable.
BD LSRII BD Instrument for flow cytometry analysis of neutrophil death.
Calcium chloride (CaCl2) Sigma Aldrich C4901 Assitant of Annexin-V binding  to phosphatidylserine.
Confocal microscope Perkinelmer UltraVIEW VOX Instrument for fluorescent analysis of neutrophil death.
Confocal plate NEST 801001-20mm Lab consumable for fluorescent image assay.
Counting beads Thermo Fisher C36950 Quantification in flow cytometry analysis of neutrophil death.
DFO Sigma Aldrich D9533 Component of CLON-G. LMP inhibitor.
Dimethyl sulfoxide ( DMSO) Sigma Aldrich D2650 Solvent for Q-VD-oph and Nec-1s.
Fetal Bovine Serum Gibco 10099141C Component of neutrophil culture basic medium. Nutrition supply.
FITC-Annexin-V BD 51-65874X Annexin-V can bind to phosphatidylserine of aged cells.This is at FITC channel.
Hsp70 Abcam ab113187 Component of CLON-G. LMP inhibitor.
NAC Sigma Aldrich A9165 Component of CLON-G. Antioxidant.
Nec-1s EMD Millipore 852391-15-2 Component of CLON-G. Necroptosis inhibitor.
Penicillin-Streptomycin Solution (PS) Gibco 15070063 Component of neutrophil culture basic medium. Antibiotics to protect cells from bacteria comtamination.
Propidium Iodide (PI) BioLegend 421301 For neutrophil death assay. A small fluorescent molecule that binds to DNA  but cannot passively traverse into cells that possess an intact plasma membrane.
Q-VD-oph Selleck chem S7311 Component of CLON-G. Pan-caspase inhibitor.
Recombinant Human Granulocyte Colony-stimulating Factor for Injection (CHO cell)(G-CSF) Chugai Pharma China GRANOCYTE Component of CLON-G.  Promote neutrophil survival through Akt pathway.
Round-Bottom Polystyrene Tubes Falcon 100-0102 Lab consumable for flow cytometry analysis.
RPMI1640 Gibco C11875500BT Component of neutrophil culture basic medium.
Saline LEAGENE R00641 Solution for flow cytometry analysis of neutrophil death.
Sodium hydroxide (NaOH) FENG CHUAN 13-011-00029 pH adjustion for NAC.
Wright-Giemsa Stain Solution Solarbio G1020 Neutrophil cytospin staining.

DOWNLOAD MATERIALS LIST

References

  1. Segal, A. W. How neutrophils kill microbes. Annual Review of Immunology. 23, 197-223 (2005).
  2. Rosales, C. Neutrophil: A cell with many roles in inflammation or several cell types. Frontiers in Physiology. 9, 113 (2018).
  3. Chung, S., Armstrong-Scott, O., Charlewood, R. Therapeutic granulocyte infusion for patients with severe neutropaenia and neutrophilic dysfunction: New Zealand experience. Vox Sanguinis. 117 (2), 220-226 (2021).
  4. Zhou, B., et al. Clinical outcome of granulocyte transfusion therapy for the treatment of refractory infection in neutropenic patients with hematological diseases. Annals of Hematology. 97 (11), 2061-2070 (2018).
  5. Covas, D. T., et al. Granulocyte transfusion combined with granulocyte colony stimulating factor in severe infection patients with severe aplastic anemia: A single center experience from China. PLoS One. 9 (2), e88148 (2014).
  6. Tecchio, C., Cassatella, M. A. Uncovering the multifaceted roles played by neutrophils in allogeneic hematopoietic stem cell transplantation. Cellular & Molecular Immunology. 18 (4), 905-918 (2021).
  7. Lahoz-Beneytez, J., et al. Human neutrophil kinetics: Modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 127 (26), 3431-3438 (2016).
  8. Pillay, J., et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 116 (4), 625-627 (2010).
  9. Kolaczkowska, E., Kubes, P. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology. 13 (3), 159-175 (2013).
  10. Tofts, P. S., Chevassut, T., Cutajar, M., Dowell, N. G., Peters, A. M. Doubts concerning the recently reported human neutrophil lifespan of 5.4 days. Blood. 117 (22), 6050-6052 (2011).
  11. McDonald, J. U., et al. In vivo functional analysis and genetic modification of in vitro-derived mouse neutrophils. FASEB Journal. 25 (6), 1972-1982 (2011).
  12. Pedruzzi, E., Fay, M., Elbim, C., Gaudry, M., Gougerot-Pocidalo, M. -A. Differentiation of PLB-985 myeloid cells into mature neutrophils, shown by degranulation of terminally differentiated compartments in response to N-formyl peptide and priming of superoxide anion production by granulocyte-macrophage colony-stimulating factor. British Journal of Haematology. 117 (3), 719-726 (2002).
  13. Blanter, M., Gouwy, M., Struyf, S. Studying neutrophil function in vitro: Cell models and environmental factors. Journal of Inflammation Research. 14, 141-162 (2021).
  14. Teng, Y., Luo, H. R., Kambara, H. Heterogeneity of neutrophil spontaneous death. American Journal of Hematology. 92 (8), E156-E159 (2017).
  15. Luo, H. R., Loison, F. Constitutive neutrophil apoptosis: Mechanisms and regulation. American Journal of Hematology. 83 (4), 288-295 (2008).
  16. Fan, Y., et al. Targeting multiple cell death pathways extends the shelf life and preserves the function of human and mouse neutrophils for transfusion. Science Translational Medicine. 13 (604), (2021).
  17. Caserta, T. M. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis. 8, 345-352 (2003).
  18. Wang, X., Yousefi, S., Simon, H. U. Necroptosis and neutrophil-associated disorders. Cell Death and Disorders. 9 (2), 111 (2018).
  19. Loison, F., et al. Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. Journal of Clinical Investigation. 124 (10), 4445-4458 (2014).
  20. Kambara, H., et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Reports. 22 (11), 2924-2936 (2018).
  21. Zhu, D., et al. Deactivation of phosphatidylinositol 3,4,5-trisphosphate/Akt signaling mediates neutrophil spontaneous death. Proceedings of the National Academy of Sciences of the United States of America. 103 (40), 14836-14841 (2006).
  22. Xu, Y., Loison, F., Luo, H. R. Neutrophil spontaneous death is mediated by down-regulation of autocrine signaling through GPCR, PI3Kgamma, ROS, and actin. Proceedings of the National Academy of Sciences of the United States of America. 107 (7), 2950-2955 (2010).
  23. van Raam, B. J., Drewniak, A., Groenewold, V., vanden Berg, T. K., Kuijpers, T. W. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood. 112 (5), 2046-2054 (2008).
  24. Klein, J. B., et al. Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. Journal of Immunology. 164 (8), 4286-4291 (2000).
  25. Fan, Y., et al. Targeting multiple cell death pathways extends the shelf life and preserves the function of human and mouse neutrophils for transfusion. Science Translational Medicine. 13 (604), (2021).
  26. Xie, X., et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nature Immunology. 21 (9), 1119-1133 (2020).
  27. Cosimo, E., et al. Inhibition of NF-kappaB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes prosurvival stimuli to induce apoptosis in chronic lymphocytic leukemia cells. Clinical Cancer Research. 19 (9), 2393-2405 (2013).
  28. Borregaard, N. Neutrophils, from marrow to microbes. Immunity. 33 (5), 657-670 (2010).
  29. Porter, A. G., Jänicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation. 6 (2), 99-104 (1999).
  30. Scheel-Toellner, D., et al. Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochemical Society Transactions. 32, 679-681 (2004).
  31. Geering, B., Simon, H. U. Peculiarities of cell death mechanisms in neutrophils. Cell Death and Differentiation. 18 (9), 1457-1469 (2011).
  32. Gabelloni, M. L., Trevani, A. S., Sabatté, J., Geffner, J. Mechanisms regulating neutrophil survival and cell death. Seminars in Immunopathology. 35 (4), 423-437 (2013).
  33. Loison, F., et al. Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. Journal of Clinical Investigation. 124 (10), 4445-4458 (2014).
  34. Cho, Y. S., et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137 (6), 1112-1123 (2009).
  35. He, S., et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137 (6), 1100-1111 (2009).
  36. Sun, L., et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148 (1-2), 213-227 (2012).
  37. Zhang, D. -W., et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325 (5938), 332-336 (2009).
  38. Wang, X., He, Z., Liu, H., Yousefi, S., Simon, H. -U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. Journal of Immunology. 197 (10), 4090-4100 (2016).
  39. Hsu, A. Y., Peng, Z., Luo, H., Loison, F. Isolation of human neutrophils from whole blood and buffy coats. Journal of Visualized Experiments. (175), e62837 (2021).
  40. George, B., Bhattacharya, S. Infections in hematopoietic stem cell transplantation (HSCT) patients. Contemporary Bone Marrow Transplantation. Chandy, M., Radhakrishnan, V. S., Sukumaran, R. , Springer. Cham, Switzerland. (2020).
  41. Lucena, C. M., et al. Pulmonary complications in hematopoietic SCT: A prospective study. Bone Marrow Transplant. 49 (10), 1293-1299 (2014).
  42. Tomblyn, M., et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: A global perspective. Biology of Blood and Marrow Transplantation. 15 (10), 1143-1238 (2009).
  43. Wingard, J. R., Hiemenz, J. W., Jantz, M. A. How I manage pulmonary nodular lesions and nodular infiltrates in patients with hematologic malignancies or undergoing hematopoietic cell transplantation. Blood. 120 (9), 1791-1800 (2012).
  44. Wingard, J. R., Hsu, J., Hiemenz, J. W. Hematopoietic stem cell transplantation: An overview of infection risks and epidemiology. Infectious Disease Clinics of North America. 24 (2), 257-272 (2010).
  45. Netelenbos, T., et al. The burden of invasive infections in neutropenic patients: incidence, outcomes, and use of granulocyte transfusions. Transfusion. 59 (1), 160-168 (2019).

Tags

生物学、第195号、
CLON-Gおよび <em>in vitro</em> 自然死アッセイによる好中球の寿命延長
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Fan, Y., Teng, Y., Liu, F. t., Ma,More

Fan, Y., Teng, Y., Liu, F. t., Ma, F., Hsu, A. Y., Feng, S., Luo, H. R. Neutrophil Lifespan Extension with CLON-G and an In Vitro Spontaneous Death Assay. J. Vis. Exp. (195), e65132, doi:10.3791/65132 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter