Summary

Multimodal ikke-lineær hyperspektral kemisk billeddannelse ved hjælp af linjescanning vibrationssumfrekvensgenereringsmikroskopi

Published: December 01, 2023
doi:

Summary

En multimodal, hurtig hyperspektral billeddannelsesramme blev udviklet for at opnå bredbåndsvibrationssumfrekvensgenerering (VSFG) billeder sammen med brightfield, anden harmonisk generation (SHG) billedbehandlingsmetoder. På grund af at den infrarøde frekvens resonans med molekylære vibrationer afsløres mikroskopisk strukturel og mesoskopisk morfologividen om symmetri-tilladte prøver.

Abstract

Vibrational sum-frequency generation (VSFG), et andenordens ikke-lineært optisk signal, er traditionelt blevet brugt til at studere molekyler ved grænseflader som en spektroskopiteknik med en rumlig opløsning på ~ 100 μm. Spektroskopien er imidlertid ikke følsom over for heterogeniteten af en prøve. For at studere mesoskopisk heterogene prøver skubbede vi sammen med andre opløsningsgrænsen for VSFG-spektroskopi ned til ~ 1 μm niveau og konstruerede VSFG-mikroskopet. Denne billeddannelsesteknik kan ikke kun løse prøvemorfologier gennem billeddannelse, men også optage et bredbånds VSFG-spektrum ved hver pixel i billederne. Da den er en andenordens ikke-lineær optisk teknik, muliggør dens udvælgelsesregel visualisering af ikke-centrosymmetriske eller chirale selvmonterede strukturer, der almindeligvis findes inden for blandt andet biologi, materialevidenskab og bioteknologi. I denne artikel vil publikum blive guidet gennem et omvendt transmissionsdesign, der giver mulighed for billeddannelse af ikke-fikserede prøver. Dette arbejde viser også, at VSFG-mikroskopi kan løse kemisk specifik geometrisk information om individuelle selvmonterede ark ved at kombinere den med en neurale netværksfunktionsløser. Endelig diskuterer billederne opnået under brightfield-, SHG- og VSFG-konfigurationer af forskellige prøver kort de unikke oplysninger, der afsløres af VSFG-billeddannelse.

Introduction

Vibrational sum-frequency generation (VSFG), en andenordens ikke-lineær optisk teknik1,2, er blevet anvendt i vid udstrækning som et spektroskopiværktøj til kemisk profilering af symmetri-tilladte prøver 3,4,5,6,7,8,9,10,11,12,13, 14,15,16,17,18,19,20,21,22. Traditionelt er VSFG blevet anvendt på grænsefladesystemer 8,9,10,11 (dvs. gas-væske, væske-væske, gas-fast, fast-væske), som mangler inversionssymmetri – et krav til VSFG-aktivitet. Denne anvendelse af VSFG har givet et væld af molekylære detaljer om nedgravede grænseflader 12,13, konfigurationer af vandmolekyler ved grænseflader 14,15,16,17,18 og kemiske arter ved grænseflader 19,20,21,22.

Selvom VSFG har været stærk til at bestemme molekylære arter og konfigurationer ved grænseflader, er dets potentiale til måling af molekylære strukturer af materialer, der mangler inversionscentre, ikke blevet opfyldt. Dette skyldes dels, at materialerne kunne være heterogene i deres kemiske miljø, sammensætninger og geometriske arrangement, og et traditionelt VSFG-spektrometer har et stort belysningsområde i størrelsesordenen 100 μm2. Således rapporterer traditionel VSFG-spektroskopi om ensemble-gennemsnitlig information af prøven over et typisk 100 μm2 belysningsområde. Dette ensemblegennemsnit kan føre til signalannulleringer mellem velordnede domæner med modsatte orienteringer og fejlkarakterisering af lokale heterogeniteter 15,20,23,24.

Med fremskridt inden for høj numerisk blænde (NA), reflekterende mikroskopmål (Schwarzschild og Cassegrain geometrier), som er næsten fri for kromatiske aberrationer, kan fokusstørrelsen af de to stråler i VSFG-eksperimenter reduceres fra 100 μm 2 til 1-2 μm2 og i nogle tilfælde submikron25. Inklusive dette teknologiske fremskridt har vores gruppe og andre udviklet VSFG til en mikroskopiplatform 20,23,26,27,28,29,30,31,32,33,34,35,36. For nylig har vi implementeret et inverteret optisk layout og bredbåndsdetekteringsskema37, som muliggør en problemfri samling af multimodale billeder (VSFG, anden harmonisk generation (SHG) og brightfield optisk). Multimodalitetsbilleddannelsen muliggør hurtig inspektion af prøver ved hjælp af optisk billeddannelse, korrelering af forskellige typer billeder sammen og lokalisering af signalpositioner på prøvebillederne. Med den akromatiske belysningsoptik og valg af pulserende laserbelysningskilde giver denne optiske platform mulighed for fremtidig problemfri integration af yderligere teknikker såsom fluorescensmikroskopi38 og Ramanmikroskopi, blandt andre.

I dette nye arrangement er prøver som hierarkiske organisationer og en klasse af molekylære selvsamlinger (MSA’er) blevet undersøgt. Disse materialer omfatter kollagen og biomimetik, hvor både den kemiske sammensætning og geometriske organisation er vigtige for materialets ultimative funktion. Fordi VSFG er et andenordens ikke-lineært optisk signal, er det specifikt følsomt over for intermolekylære arrangementer39,40, såsom intermolekylær afstand eller vridningsvinkler, hvilket gør det til et ideelt værktøj til at afsløre både kemiske sammensætninger og molekylære arrangementer. Dette arbejde beskriver VSFG-, SHG- og brightfield-modaliteterne for kerneinstrumentet, der består af en ytterbiumdoteret hulrums-faststoflaser, der pumper en optisk parametrisk forstærker (OPA), et hjemmebygget multimodalt inverteret mikroskop og monokromatorfrekvensanalysator koblet til en todimensionel ladet koblet enhed (CCD) detektor27. En trinvis konstruktions- og justeringsprocedure og en komplet delliste over opsætningen leveres. En dybdegående analyse af en MSA, hvis grundlæggende molekylære underenhed består af et molekyle natrium-dodecylsulfat (SDS), et fælles overfladeaktivt middel og to molekyler β-cyclodextrin (β-CD), kendt som SDS@2 β-CD heri, gives også som et eksempel for at vise, hvordan VSFG kan afsløre molekylespecifikke geometriske detaljer om organiseret stof. Det er også blevet påvist, at kemikaliespecifikke geometriske detaljer i MSA kan bestemmes med en neurale netværksfunktionsløsertilgang.

Protocol

1. Hyperspektral linjescanning VSFG-mikroskop LaseranlægBrug et pulserende lasersystem (se materialetabellen) centreret ved 1025 nm ± 5 nm. Laseren er indstillet til 40 W, 200 kHz (200 μJ/puls) med en pulsbredde på ~290 fs.BEMÆRK: Den nøjagtige gentagelseshastighed kan variere, og en laser med høj gentagelseshastighed fungerer generelt bedre til dette VSFG-mikroskop. Før frølaserens output ind i en kommerciel optisk parametrisk forstærker (OPA) for at generere e…

Representative Results

Figur 5: Molekylær struktur, morfologi og potentiel orientering af SDS@β-CD. (A) Set ovenfra og (B) set fra siden af SDS@β-CD. C) Repræsentativ heterogen prøvefordeling af mesoskalaarkene på prøveplanet. Den molekylære underenhed kunne have forskellige orienteringer og justering på substrat…

Discussion

De mest kritiske trin er fra 1, 42 til 1, 44. Det er afgørende at justere objektivobjektivet godt for en optisk rumlig opløsning. Det er også vigtigt at indsamle det udsendte signal, relæ og projicere scanningsstrålen som en linje ved indgangsspalterne. Korrekte justeringer ville garantere den bedste opløsning og signal-støj-forhold. For en typisk prøve, som SDS@2 β-CD 100 μm x 100 μm ark, vil et billede med god opløsning (~1 μm opløsning) med et højt signal-støj-forhold tage 20 minutter. Dette er allered…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Instrumentudviklingen støttes af Grant NSF CHE-1828666. ZW, JCW og WX støttes af National Institutes of Health, National Institute of General Medical Sciences, Grant 1R35GM138092-01. BY støttes af Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS, 2021183).

Materials

1x Camera Por Thorlabs WFA4100 connect a camera to a microscope or optical system
25.0 mm Right-Angle Prism Mirror, Protected Gold Thorlabs MRA25-M01 reflect light and produce retroreflection, redirecting light back along its original path
3” Universal Post Holder-5 Pack Thorlabs UPH3-P5 hold and support posts of various sizes and configurations
30 mm to 60 mm Cage Plate, 4 mm Thick Thorlabs LCP4S convert between a 30 mm cage system and a 60 mm cage system
500 mm Tall Cerna Body with Epi Arm Thorlabs CEA1500 provide the function of enabling top illumination techniques in microscopy
60 mm Cage Mounted Ø50.0 mm Iris Thorlabs LCP50S control the amount of light passing through an optical system
60 mm Cage Mounting Bracket Thorlabs LCP01B mount and position a 60 mm cage system in optical setups
Air spaced Etalon SLS Optics Ltd. Customized generate narrow-band 1030 nm light 
Cage Plate Mounting Bracket Thorlabs KCB2 hold and adjust mirrors at a precise angle
CCD Andor Technologies Newton  2D CCD for frequency and spatial resolution
Collinear Optical Parametric Amplifier Light Conversion Orpheus-One-HP Tunable MID light generator
Copper Chloride Thermo Fischer Scientific A16064.30 Self-assembly component
Customized Dichroic Mirror Newport Customized selectively reflects or transmits light based on its wavelength or polarization
Ext to M32 Int Adapter Thorlabs SM1A34 provide compatibility and facilitating the connection between components with different thread types
Infinity Corrected Refractive Objective Zeiss 420150-9900-000 Refractive Objective
Infinity Corrected Schwarzschild Objective Pike Technologies Inc. 891-0007 Reflective objective
Laser Carbide, Light-Conversion C18212 Laser source
M32x0.75 External to Internal RMS Thorlabs M32RMSS adapt or convert the threading size or type of microscope objectives 
M32x0.75 External to M27x0.75 Internal Engraving Thorlabs M32M27S adapt or convert the threading size or type of microscope objectives 
Manual Mid-Height Condenser Focus Module Thorlabs ZFM1030 adjust the focus of an optical element
Monochromator Andor Technologies Shamrock 500i Provides frequency resolution for each line scan
Motorized module with 1" Travel for Edge-Mounted Arms Thorlabs ZFM2020 control the vertical positon of the imaging objective
Nanopositioner Mad City Labs Inc. MMP3 3D sample stage
Resonant Scanner EOPC SC-25 325Hz resonant beam scanner
RGB Color CCD Camera Thorlabs DCU224C Brightfield camera, discontinued but other cameras will work just as well
RGB tube lens Thorlabs ITL200 white light collection
Right Angle Kinematic Breadboard Thorlabs OPX2400 incorporate a sliding mechanism with two fixed positions
Right Angle Kinematic Mirror Mount, 30 mm Thorlabs KCB1 hold and adjust mirrors at a precise angle
Right Angle Kinematic Mirror Mount, 60 mm Thorlabs KCB2 hold and adjust mirrors at a precise angle
SM2, 60 mm Cage Arm for Cerna Focusing Stage Thorlabs CSA2100 securely mount and position condensers
Snap on Cage Cover for 60 mm Cage, 24 in Long, Thorlabs C60L24 enclose and protect the components inside the cage
Sodium dodecyl sulfate Thermo Fischer Scientific J63394.AK Self-assembly component
Three-Chnnale Controller and Knob Box for 1" Cerna Travel Stages Thorlabs MCM3001 control ZFM2020
Tube lens Thorlabs LA1380-AB – N-BK7 SFG signal collection
Visible LED Set Thorlabs WFA1010 provide illumination in imaging setup
Whitelight Source Thorlabs WFA1010 Whitelight illumination source for brightfield imaging
WPH05M-1030 – Ø1/2" Zero-Order Half-Wave Plate, Ø1" Mount, 1030 nm  Thorlabs WPH05M-1030 alter the polarization state of light passing through it
WPLQ05M-3500 – Ø1/2" Mounted Low-Order Quarter-Wave Plate, 3.5 µm  Thorlabs WPLQ05M-3500 alter the polarization state of light passing through it
X axis Long Travel Steel Extended Contact Slide Stages Optosigma TSD-65122CUU positioning stages that offer extended travel in the horizontal (X) direction
XT95 4in Rail Carrier Thorlabs XT95RC4 mount and position optical components
X-Y Axis Translation Stage w/ 360 deg. Rotation Thorlabs XYR1 precise movement and positioning of objects in two dimensions, along with the ability to rotate the platform
XY(1/2") Linear Translator with Central SM1 Thru Hole Thorlabs XYT1 provide precise movement and positioning in two dimensions
Yb doped Solid State Laser Light Conversion CB3-40W Seed laser
β-Cyclodextrin Thermo Fischer Scientific J63161.22 Self-assembly component

References

  1. Zhu, X. D., Suhr, H., Shen, Y. R. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Physical Review B. 35 (6), 3047-3050 (1987).
  2. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature. 337 (6207), 519-525 (1987).
  3. Li, Y., Shrestha, M., Luo, M., Sit, I., Song, M., Grassian, V. H., Xiong, W. Salting up of proteins at the air/water interface. Langmuir. 35 (43), 13815-13820 (2019).
  4. Wang, C., Li, Y., Xiong, W. Extracting molecular responses from ultrafast charge dynamics at material interfaces. Journal of Materials Chemistry C. 8 (35), 12062-12067 (2020).
  5. Nihonyanagi, S., Mondal, J. A., Yamaguchi, S., Tahara, T. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annual Review of Physical Chemistry. 64 (1), 579-603 (2013).
  6. Nihonyanagi, S., Yamaguchi, S., Tahara, T. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chemical Reviews. 117 (16), 10665-10693 (2017).
  7. Singh, P. C., Nihonyanagi, S., Yamaguchi, S., Tahara, T. Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. The Journal of Chemical Physics. 137 (9), 094706 (2012).
  8. Jubb, A. M., Hua, W., Allen, H. C. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annual Review of Physical Chemistry. 63 (1), 107-130 (2012).
  9. Ishiyama, T., Sato, Y., Morita, A. Interfacial structures and vibrational spectra at liquid/liquid boundaries: molecular dynamics study of water/carbon tetrachloride and water/1,2-dichloroethane interfaces. The Journal of Physical Chemistry C. 116 (40), 21439-21446 (2012).
  10. Sapi, A., Liu, F., Cai, X., Thompson, C. M., Wang, H., An, K., Krier, J. M., Somorjai, G. A. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled pt nanoparticles: striking differences in kinetics and mechanism. Nano Letters. 14 (11), 6727-6730 (2014).
  11. Chen, X., Wang, J., Sniadecki, J. J., Even, M. A., Chen, Z. Probing α-helical and β-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir. 21 (7), 2662-2664 (2015).
  12. Dramstad, T. A., Wu, Z., Gretz, G. M., Massari, A. M. Thin films and bulk phases conucleate at the interfaces of pentacene thin films. The Journal of Physical Chemistry C. 125 (30), 16803-16809 (2021).
  13. Xiang, B., Li, Y., Pham, C. H., Paesani, F., Xiong, W. Ultrafast direct electron transfer at organic semiconductor and metal interfaces. Science Advances. 3 (11), e1701508 (2017).
  14. Livingstone, R. A., Nagata, Y., Bonn, M., Backus, E. H. G. Two types of water at the water-surfactant interface revealed by time-resolved vibrational spectroscopy. Journal of the American Chemical Society. 137 (47), 14912-14919 (2015).
  15. Wagner, J. C., Hunter, K. M., Paesani, F., Xiong, W. Water capture mechanisms at zeolitic imidazolate framework interfaces. Journal of the American Chemical Society. 143 (50), 21189-21194 (2021).
  16. Montenegro, A., Dutta, C., Mammetkuliev, M., Shi, H., Hou, B., Bhattacharyya, D., Zhao, B., Cronin, S. B., Benderskii, A. V. Asymmetric response of interfacial water to applied electric fields. Nature. 594 (7861), 62-65 (2021).
  17. Nihonyanagi, S., Ishiyama, T., Lee, T., Yamaguchi, S., Bonn, M., Morita, A., Tahara, T. Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface. Journal of the American Chemical Society. 133 (42), 16875-16880 (2011).
  18. Shen, Y. R., Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chemical Reviews. 106 (4), 1140-1154 (2006).
  19. Hosseinpour, S., Roeters, S. J., Bonn, M., Peukert, W., Woutersen, S., Weidner, T. Structure and dynamics of interfacial peptides and proteins from vibrational sum-frequency generation spectroscopy. Chemical Reviews. 120 (7), 3420-3465 (2020).
  20. Wang, H., Xiong, W. Vibrational sum-frequency generation hyperspectral microscopy for molecular self-assembled systems. Annual Review of Physical Chemistry. 72 (1), 279-306 (2021).
  21. Wang, H. -. F., Velarde, L., Gan, W., Fu, L. Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. Annual Review of Physical Chemistry. 66 (1), 189-216 (2015).
  22. Inoue, K., Ahmed, M., Nihonyanagi, S., Tahara, T. Reorientation-induced relaxation of free oh at the air/water interface revealed by ultrafast heterodyne-detected nonlinear spectroscopy. Nature Communications. 11 (1), 5344 (2020).
  23. Wang, H., Gao, T., Xiong, W. Self-phase-stabilized heterodyne vibrational sum frequency generation microscopy. ACS Photonics. 4 (7), 1839-1845 (2017).
  24. Wang, H., Xiong, W. Revealing the molecular physics of lattice self-assembly by vibrational hyperspectral imaging. Langmuir. 38 (10), 3017-3031 (2022).
  25. Raghunathan, V., Han, Y., Korth, O., Ge, N. -. H., Potma, E. O. Rapid vibrational imaging with sum frequency generation microscopy. Optics Letters. 36 (19), 3891 (2011).
  26. Wang, H., Wagner, J. C., Chen, W., Wang, C., Xiong, W. Spatially dependent h-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials. Proceedings of the National Academy of Sciences. 117 (38), 23385-23392 (2020).
  27. Wagner, J. C., Wu, Z., Wang, H., Xiong, W. Imaging orientation of a single molecular hierarchical self-assembled sheet: the combined power of a vibrational sum frequency generation microscopy and neural network. The Journal of Physical Chemistry B. 126 (37), 7192-7201 (2022).
  28. Han, Y., Hsu, J., Ge, N. -. H., Potma, E. O. Polarization-sensitive sum-frequency generation microscopy of collagen fibers. The Journal of Physical Chemistry B. 119 (8), 3356-3365 (2015).
  29. Chung, C. -. Y., Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annual Review of Physical Chemistry. 64 (1), 77-99 (2013).
  30. Potma, E. O. Advances in vibrationally resonant sum-frequency generation microscopy. Optics in the Life Sciences Congress. , (2017).
  31. Han, Y., Raghunathan, V., Feng, R. R., Maekawa, H., Chung, C. -. Y. Y., Feng, Y., Potma, E. O., Ge, N. -. H. H. Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy. The Journal of Physical Chemistry B. 117 (20), 6149-6156 (2013).
  32. Hsu, J., Haninnen, A., Ge, N. -. H., Potma, E. O. Molecular imaging with sum-frequency generation microscopy. Optics in the Life Sciences. , (2015).
  33. Hanninen, A., Shu, M. W., Potma, E. O. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy. Biomedical Optics Express. 8 (9), 4230 (2017).
  34. Wang, H., Chen, W., Wagner, J. C., Xiong, W. Local ordering of lattice self-assembled SDS@2β-CD materials and adsorbed water revealed by vibrational sum frequency generation microscope. The Journal of Physical Chemistry B. 123 (29), 6212-6221 (2019).
  35. Cimatu, K., Baldelli, S. Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid−liquid interface. Journal of the American Chemical Society. 130 (25), 8030-8037 (2008).
  36. Shah, S. A., Baldelli, S. Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy. Accounts of Chemical Research. 53 (6), 1139-1150 (2020).
  37. Wagner, J. a. c. k. s. o. n. . C., Zishan, W. u., Xiong, W. Multimodal nonlinear vibrational hyperspectral imaging. ChemRxiv. , (2023).
  38. Yan, C., Wagner, J., Wang, C., Ren, J., Lee, C., Wan, Y., Wang, S., Xiong, W. Multi-dimensional widefield infrared-encoded spontaneous emission microscopy: distinguishing chromophores by ultrashort infrared pulses. ChemRxiv. , (2023).
  39. Lin, Y., Fromel, M., Guo, Y., Guest, R., Choi, J., Li, Y., Kaya, H., Pester, C. W., Kim, S. H. Elucidating interfacial chain conformation of superhydrophilic polymer brushes by vibrational sum frequency generation spectroscopy. Langmuir. 38 (48), 14704-14711 (2022).
  40. Choi, J., Lee, J., Makarem, M., Huang, S., Kim, S. H. Numerical simulation of vibrational sum frequency generation intensity for non-centrosymmetric domains interspersed in an amorphous matrix: a case study for cellulose in plant cell wall. The Journal of Physical Chemistry B. 126 (35), 6629-6641 (2022).
  41. Matlab Image Processing Toolbox Hyperspectral Imaging Library. . , .
  42. Armstrong, B. H. Spectrum line profiles: the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer. 7 (1), 61-88 (1967).
  43. Wu, Z., Xiong, W. Neumann’s principle based eigenvector approach for deriving non-vanishing tensor elements for nonlinear optics. The Journal of Chemical Physics. 157 (13), 134702 (2022).
  44. Chollet, F. Keras Neural Network Library. https://github.com/fchollet/keras accessed Apr 12. , (2021).
  45. Vicidomini, G., Bianchini, P., Diaspro, A. STED super-resolved microscopy. Nature Methods. 15 (3), 173-182 (2018).
  46. Xiong, W., Laaser, J. E., Mehlenbacher, R. D., Zanni, M. T. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. Proceedings of the National Academy of Sciences. 108 (52), 20902-20907 (2011).
  47. Lukas, M., Backus, E. H. G., Bonn, M., Grechko, M. Passively stabilized phase-resolved collinear sfg spectroscopy using a displaced sagnac interferometer. The Journal of Physical Chemistry A. 126 (6), 951-956 (2022).
  48. Ji, N., Ostroverkhov, V., Chen, C., Shen, Y. Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains. Journal of the American Chemical Society. 129 (33), 10056-10057 (2007).
check_url/65388?article_type=t

Play Video

Cite This Article
Wagner, J. C., Yang, B., Wu, Z., Xiong, W. Multimodal Nonlinear Hyperspectral Chemical Imaging Using Line-Scanning Vibrational Sum-Frequency Generation Microscopy. J. Vis. Exp. (202), e65388, doi:10.3791/65388 (2023).

View Video