Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

キメラを標的としたタンパク質分解による三元複合体形成評価のための生物物理学的アッセイの開発と応用(PROTACS)

Published: January 12, 2024 doi: 10.3791/65718

Summary

ここでは、ユビキチンリガーゼVon Hippel-Lindau E3リガーゼ(VHL)およびセレブロン(CRBN)を含むキメラ(PROTACS)を標的とするタンパク質分解によって誘導される三元複合体形成の生物物理学的特性評価のためのプロトコルについて説明します。 本明細書に例示される生物物理学的方法には、表面プラズモン共鳴(SPR)、生物層干渉法(BLI)、および等温滴定熱量測定(ITC)が含まれる。

Abstract

分解を標的とするE3リガーゼおよびタンパク質は、多段階プロセスにおいて、ヘテロ二官能性分子によって複合体を形成するように誘導することができる。関与する相互作用の速度論と熱力学は、ユビキチン化の効率とその結果生じるタンパク質の分解に寄与します。表面プラズモン共鳴(SPR)、バイオレイヤー干渉法(BLI)、等温滴定カロリメトリー(ITC)などの生物物理学的手法は、これらの相互作用の最適化に使用できる貴重な情報を提供します。2つのモデルシステムを用いて、三元複合体形成の協同性と結合速度論に対する「フック効果」の影響を理解するための生物物理学的アッセイツールキットを確立しました。1つの症例では、Brd4BD2とVHLの間の三元複合体形成を誘導するキメラを標的とするタンパク質分解(PROTAC)分子が評価されました。ヘテロ二官能性分子であるMZ1は、Brd4BD2タンパク質(SPR K D = 1 nM、ITC K D = 4 nM)とVHL複合体(SPR K D = 29 nM、ITC K D = 66 nM)の両方にnM親和性を持っています。このシステムでは、三元複合体形成の協同性を実証する発表された結果を再現した堅牢なSPR、BLI、およびITCアッセイが開発されました。もう一つは、46.0kDaのタンパク質PPM1Dとセレブロン[CRBN(319-442)]の間に三元複合体を誘導する分子を研究した。ヘテロ二官能性分子であるBRD-5110は、PPM1DのSPR KD = 1 nMを有するが、切断型CRBN(319-442)複合体に対する結合ははるかに弱い(SPR KD=~3 μM)。その場合、SPRにおけるCRBNの結合は飽和しておらず、「フック効果」が生じました。SPR、BLI、およびITCのスループットと試薬の要件が評価され、PROTACプロジェクトへの適用に関する一般的な推奨事項が提供されました。

Introduction

細胞内のタンパク質のポリユビキチン化は、ユビキチンリガーゼファミリーの酵素が関与する厳密に制御されたプロセスです1,2。経路の末端酵素は、ユビキチン分子をタンパク質結合パートナーに共有結合させるE3ユビキチンリガーゼである3。これらのタンパク質結合パートナーのポリユビキチン化は、プロテアソームによるタンパク質分解の標的となります4。このシステムは、疾患に関与するタンパク質の分解を誘導するために治療的に活用されているタンパク質の恒常性維持プロセスの一部です5。フォン・ヒッペル・リンダウE3リガーゼ(VHL)やセレブロン(CRBN)などのE3ユビキチンリガーゼ間の相互作用を誘導する低分子は、典型的には、分解の標的となるタンパク質に結合する弾頭に柔軟なリンカーによって接続されたE3リガーゼ結合弾頭から構成される。これらのヘテロ二官能性分子は、一般にキメラを標的とするタンパク質分解またはPROTACS6と呼ばれています。

PROTACSの開発には、細胞内のタンパク質の分解を誘導する分子の能力を評価することが含まれます。細胞をPROTAC分子で処理した際に、標的タンパク質とVHLやCRBNなどのE3リガーゼ成分との間の誘導相互作用をモニターする多くの細胞アッセイシステムが開発されています。そのような細胞アッセイの1つであるnanoluc−Halotagシステム7は、Halotagアクセプターに融合したE3リガーゼと、nanolucドナーでタグ付けされた標的タンパク質を含む。三元複合体の形成により、ナノルクドナーとハロタグアクセプターが近接し、ドナーからアクセプターへのエネルギーの伝達が可能になり、光が放出されます。このシステムのバリエーションは、PROTACS分子の細胞透過性8、または標的タンパク質のユビキチン化の相対レベルの変化9を評価するために使用できます。これらの細胞系はPROTACSの最適化を推進するために不可欠であるが、E3リガーゼと分解を標的とするタンパク質との間の複合体の形成は多段階のプロセスである10,11。関与する二元相互作用と三元相互作用の速度論と熱力学は、効率、ユビキチン化、および結果として生じるタンパク質の分解に寄与します12,13,14。

本明細書には、表面プラズモン共鳴(SPR)、生物層干渉法(BLI)、および等温滴定熱量測定(ITC)を用いて、PROTACSによって誘導される三元複合体形成の生物物理学的特性評価に適合させることができるプロトコルが記載されている。文献レポート13,15から派生し、ここで説明されているBrd4BD2とVHLの間の三元複合体形成を誘導するMZ1 PROTAC分子のSPRおよびITCプロトコルは、報告された手順をいくらか修正して報告された結果を要約することができました。このレポートには、MZI、Brd4BD2、およびVHL間の三元複合体形成を評価するために使用されるBLIアッセイの説明が含まれています。BLIからの親和性測定は、SPRおよびITCで観察されたものと一致していました。発現がp53依存的に誘導されるSer/ThrプロテインホスファターゼであるPPM1DとCRBNの間のPROTAC誘発三元複合体形成を評価するためにSPRアッセイが開発された以前に発表されたプロトコルも記載されています。この場合、PROTAC分子はPPM1Dに対してはナノモル親和性を有するが、CRBNに対してはマイクロモル親和性のみを有する。この場合、PROTAC分子のCRBNへの結合は飽和せず、一般的に観察される「フック効果」が生じます。フック効果は、3つのボディシステムの特性であり、2つの種が架橋分子に結合すると、ヘテロ三量体複合体を形成できます(図1)17。フック効果は、架橋種が他の2つの種に比べて過剰に集中している場合に観察されます。結果として得られる状態は、二項相互作用が三元相互作用を凌駕する状態です。フック効果が観察されるシステムには、このレポートで説明する特定の実験計画上の考慮事項が必要です。PROTAC誘発三元複合体形成の評価のための生物物理学的アッセイの利用を評価するための一般的な概念と試薬要件が提供されます。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

すべての蛋白質は文献の議定書18に従ってよい収穫および純度(>80%)のエシェリヒア属大腸菌で過剰発現した。ビオチン化は、BirA触媒反応を用いて行った18。すべての低分子は、100% DMSO 中の 1 mM ストック溶液で調製しました。ここに記載されている手順は、特別な実験室の安全装置や予防措置を必要としません。標準的な実験室用個人用保護具(PPE)を使用する必要があります(つまり、白衣、安全ゴーグル、手袋)。

この研究で適用されたタンパク質は、以下の通りです。
VHL:ビオチン化VHL(53-213)/ElonginB(1-104)/ElonginC(17-112)複合体とElonginBのC末端にAviタグ。
Brd4BD2: タグなし Brd4BD2(333-460)
CRBN:ビオチン化CRBN(319-442)とN末端にAviタグ
PPM1D:N末端の非タグまたは二重His8タグPPM1D(1-420)

この研究で適用された低分子は、以下の通りです。
MZ1 (MW = 1002.6 Da): VHLおよびBrd4BD2に結合するPROTAC
BRD-2512 (MW = 841.4 Da): CRBN KD ~3 μM、PPM1D に結合しない
BRD-5110 (MW = 872.0 Da): CRBN K D ~3 μM, PPM1D KD = 1-2 nM
BRD-4761 (MW = 476.6 Da): CRBN に結合しない、PPM1D KD = 1-2 nM

1.方法1:ITC(等温滴定熱量測定)

注:滴定は、自動注入を備えたマイクロカロリメーターを使用して行われます。

  1. バッファー調製:20 mM HEPES、150 mM NaCl、1 mM TCEP、pH 7.5 を含むバッファー 3 L を調製します。
  2. 透析:ステップ1.1で調製したバッファー1Lに対して、VHLおよびBrd4BD2 (各150μMで~500μL)を、それぞれ4°Cで3回、4時間、2時間、および約16時間、透析します。最後の透析後にバッファーを保存し、以降のステップで使用してください。
  3. プラスチックカバー付きの96ウェルプレートにサンプルを調製します。
    1. 滴定ごとに、細胞用に400 μLの溶液、シリンジ用に125 μL、洗浄用に400 μLのバッファーを調製します。プレート上の3つの連続したウェルにサンプルを加えます。化合物ストックは 100% DMSO 中に 1 mM で調製されるため、同じ割合の DMSO をタンパク質溶液に添加して、細胞およびシリンジ内でバッファーが一致するようにします。最終溶液に 2% DMSO を添加します。
      1. VHLをMZ1に滴定するためのサンプル:392 μLのバッファー、1 mM(最終濃度10 μM)のMZ1 4 μL、および100% DMSOの4 μLを含む細胞溶液を調製します。85.7 μMで122.5 μLのVHL、2.5 μLの100% DMSO(最終濃度84 μM)を含むシリンジ溶液を調製します。
      2. バッファーへのVHL滴定用のサンプル(データは、サンプル1.3.1.1から生成されたデータのバックグラウンド減算に使用されます):392 μLのバッファー、8 μLの100%DMSOを含む細胞溶液を調製します。85.7 μM(最終濃度84 μM)で122.5 μLのVHLを含むシリンジ溶液を調製し、2.5 μLの100% DMSOを添加します。
      3. VHLをMZ1およびBrd4 BD2に滴定するためのサンプル:17.1 μMのBrd4BD2(最終濃度16.8 μM)392 μL、1 mMのMZ1 3.36 μL(最終濃度8.4 μM)、および100% DMSOの4.64 μLを含む細胞溶液を調製します。85.7 μM(最終濃度84 μM)のVHL122.5 μLと100%DMSOの2.5 μLを含むシリンジ溶液を調製します。
      4. Brd4BD2 へのVHL滴定用サンプル(バックグラウンド1.3.1.3):17.1 μM Brd4BD2 (最終濃度16.8 μM)392 μLと100% DMSO8 μLを含む細胞溶液を調製します。85.7 μM(最終濃度84 μM)のVHL122.5 μLと100%DMSOの2.5 μLを含むシリンジ溶液を調製します。
  4. マイクロカロリメーターで4つの滴定をすべて実行します。それぞれは、120 秒間隔で 2 μL/s の速度で 2 μL のシリンジ溶液を 19 回注入します。タンパク質(0.4 μL)を最初に注入し、データ解析中に廃棄します。すべての実験を25°Cで行い、600rpmで撹拌します。
  5. データ解析:メーカー提供の解析ソフトウェアを用いて、データを単一結合部位モデルに当てはめ、化学量論(n)、解離定数(KD)、結合エンタルピー(ΔH)を求めます(図2)。

2.方法2:BLI(バイオレイヤー干渉法)

  1. ストレプトアビジン(SA)コーティングセンサーを使用して、室温(RT)で5 Hzの取り込みレートでBLI実験を実施します。自動 BLI 実験中は、センサーが 1 つのカラム内で静止し、最大ウェル容量が 392 μL の 96 ウェル、平底、ブラックプレートの異なるカラム間を移動します。 実験で使用したプレートの各ウェルに 200 μL の溶液を充填します。
    注:BLIは、タンパク質間相互作用(すなわち、三元複合体形成)を検出するためにのみ有用です。タンパク質と低分子間の相互作用を検出するには感度が十分ではありません。
    1. バッファー調製:20 mM HEPES、150 mM NaCl、1 mM TCEP、0.05% P20、pH 7.5 を含むバッファー 100 mL を調製します。
    2. 固定化ステップの最適化:メーカーが推奨する1〜3nmにテストセンサーをロードします。~1.0 nmの負荷量は、ここで説明する手順に使用されます。これを実現するには、1.5 μg/mL の VHL を含む溶液にセンサーを 80 秒間浸します。
    3. 以下の順序で7つのSAセンサを適用し、BLI動力学測定を実施します。
      1. 最初のベースラインフェーズでは、バッファーに60秒間浸します。
      2. 固定化段階では、1.5 μg/mL の VHL 溶液に 80 秒間浸漬します。
      3. 2 番目のベースラインフェーズでは、バッファーに 60 秒間浸します。
      4. 会合相では、固定濃度のBrd4BD2 (2 μM)、固定濃度のDMSOを2%、MZ1濃度を100 nM、50 nM、25 nM、12.5 nM、6.3 nM、3.1 nM、0 nM(基準センサー)の溶液に300秒間浸漬します。
      5. 解離段階では、バッファーに600秒間浸漬します。
    4. メーカーのソフトウェアを使用してデータ分析を実行します。 konkoff、および KD は、データフィッティングについて報告されます (図 3)。

3. 方法3:SPR(表面プラズモン共鳴)

注:すべてのSPR実験は、RTでストレプトアビジン(SA)コーティングされたセンサーチップを使用して実施されます。NTAチップはタンパク質と低分子の間の検出に使用されますが、三元複合体に適用する場合は、帯電したチップ表面と分析対象物中のタンパク質との間の静電相互作用により、SAチップよりもはるかに高いバックグラウンドが観察されるため、注意して使用する必要があります。

  1. VHL-MZ1相互作用のSPR
    1. 緩衝液の調製。
      1. 20 mM HEPES、150 mM NaCl、1 mM TCEP、0.005% P20、pH7.5 を含む 1 L のバッファーを調製し、0.2 μm フィルターユニットに通します。
      2. 将来の使用のために20 mLのバッファー(DMSOフリーバッファー)を取り除き、20 mLのDMSO(最終ランニングバッファーに2% DMSO)を補充します。以下に説明するすべてのサンプルでDMSOを2%に保ちます(ステップ3.1および3.2)
    2. メーカーのプロトコルに従ってSAチップを活性化し、VHLを~2000 RUに固定化します(5 μL/分で5 μg/mLのタンパク質溶液を注入します)。
    3. MZ1 を 384 ウェル、円錐形底面、半透明、ポリプロピレンプレート(最大容量 130 μL)で、上部濃度を 10 μM にして 3 倍、8 ポイント段階希釈液で調製します。 プレートをポリプロピレン製マイクロプレートと互換性のある粘着性の透明なプラスチックホイルで覆います。
      1. DMSOフリーバッファーで最高濃度を調製し、最終濃度で2%のDMSOを確保します。147 μL の DMSO フリーバッファーに、1 mM の MZ1 ストック 1.5 μL と 100% DMSO 1.5 μL を加えます。
      2. 2% DMSO を含むランニングバッファーで 3 倍段階希釈液を調製します。ランニングバッファー100μLに、ステップ3.1.3.1で調製した最高濃度の溶液50μLを加え、よく混合して2番目に 高い濃度を調製します。
      3. 次に、ステップ3.1.3.2で調製した溶液50 μLを次の100 μLのランニングバッファーに移し、よく混合して3番目に 高い濃度に調製します。
    4. マルチサイクルセットアップを使用してSPRを実行します:モード:高性能。接触時間:120秒;解離時間:300秒;流量:50μL/分
    5. 機器メーカーが提供する評価ソフトウェアを使用してデータ解析を行います。定常状態分析では、KD = 26 (± 3) nM および最大 ~91% (± 5%) の結合が達成されたことが示されました(図 4A)
  2. VHL用SPR:MZ1:Brd4BD2 三元錯体
    1. ステップ3.1.1の説明に従ってバッファを準備します。
    2. メーカーのプロトコルに従ってSAチップをアクティブ化し、VHLを~100RUに固定化します。0.5 μg/mL VHLのタンパク質溶液を、5 μL/分の流速と1〜5分の接触時間で、表面密度が~100 RUに達するまで注入します。
    3. 最大容量 323 μL の 96 ウェル透明ポリスチレン丸底プレートに 5 倍、5 点シングルサイクル注入 2 回用のサンプルを調製し、ステップ 3.2.3.1-3.2.3.2 の説明に従って、ポリスチレン製マイクロプレートに適合する粘着性の透明プラスチックホイルで覆います。
      1. ネガティブコントロール:分析種にはBrd4BD2 のみが含まれています。
        1. 容量 200 μL のランニングバッファーで 25 μM のトップ濃度を調製します(#A5)
        2. Brd4BD2 をそれぞれ 160 μL (2 μM) のランニングバッファーに添加し、左側の次の 4 つのウェル(#A1-A4)に加えます。
        3. 40 μL の A5 を A4 に移します。よく混ぜます。
        4. 40 μL の A4 を A3 に移します。よく混ぜます。A1までこれを続けます。
      2. 三元複合体の形成:分析種にはMZ1とBrd4、BD2が含まれています。
        1. DMSO フリーバッファー(#B5)に 25.5 μM の Brd4BD2 を含む 196 μL に、100%-DMSO 溶液中の 20 μM の MZ1 を 4 μL 添加して、最高濃度を調製します。最終濃度は、25 μM の Brd4BD2、100 nM の MZ1、および 2% DMSO です。
        2. Brd4BD2 をそれぞれ 2 μM でランニングバッファーにそれぞれ 160 μL ずつ、左側の次の 4 つのウェル(#B1-B4)に加えます。
        3. 40 μL の B5 を B4 に移します。よく混ぜます。
        4. 40 μL の B4 を B3 に移します。よく混ぜます。これをB1まで続けます。
    4. シングルサイクルセットアップを使用してSPRを実行します:接触時間:100秒。解離時間:720秒;流量:50μL/分各サンプルの前にバッファーを 3 回注入して、安定したバックグラウンドを確保します。
    5. データ解析:バッファーの 3 回目の注入を減算のバックグラウンドとして適用します。ネガティブコントロールとして、MZ1が存在しない場合、VHLとBrd4BD2の間のSPR応答は無視できる。MZ1 が存在する場合、キネティック フィッティングは、VHL と MZ1-Brd4BD2 複合体の相互作用が k on = 7.9 (± 1.5) *107 /M/s、koff = 0.014 s-1、KD = 1 nM であることを示します。(図4B)
  3. CRBNおよび低分子相互作用のSPR
    1. 緩衝液の調製。
      1. 50 mM Tris、100 mM NaCl、1 mM MgCl 2、0.5 mM TCEP、0.005% P20、pH 7.5 を含む 1 L のバッファーを調製し、0.2 μm フィルターユニットに通します。
      2. 20 mL のバッファーを除去し、20 mL の 100% DMSO(最終ランニングバッファーには 2% DMSO)を補充します。以下に説明するすべてのサンプルでDMSOを2%に保つことが重要です(ステップ3.3、3.4、および3.5)。
    2. 製造元のプロトコルに従って SA チップをアクティブ化し、CRBN を ~800 RU に固定します。
    3. 3.1.3 に記載のとおり、トップ濃度 30 μM の 384 ウェルプレート上で 3 倍、6 pt 段階希釈で化合物を調製します。
    4. マルチサイクルセットアップを使用してSPRを実行します:モード:高性能、接触時間:60秒、解離時間:90秒。流量:50μL/分このシステムでは、安定したバックグラウンドを得るには、3 回のバッファー注入で十分です。他のアッセイシステムでは、追加のバッファー注入が必要になる場合があります。
    5. メーカーのソフトウェアを使用してデータ分析を実行します。
      注:定常状態分析では、BRD-2512とBRD-5110 KDはどちらも約3μMであることを示しています。しかし、結合は最高濃度で~70%のRmax 結合にしか達しなかった。弱い親和性とセンサーグラムの形状の両方から、高濃度で化合物の不溶性が起こりやすいことが示されています。したがって、実際のKD は3μMよりも高い可能性があります。 CRBNに結合しないBRD-4761をネガティブコントロールとして含めました。
  4. PPM1Dおよび低分子相互作用のSPR
    1. ステップ3.3.1の説明に従ってバッファーを準備します。ニトリロ酢酸(NTA)センサーチップを使用します。
    2. PPM1D弾頭のオンオフkが遅いため、シングルサイクルを適用します。メーカーのデフォルト設定を使用して NTA チップを再再生し、各化合物注入後に PPM1D を ~ 1000 RU に固定化します(5 μL/分で 5 μg/mL のタンパク質溶液を注入します)。
    3. 3.1.3 に記載のとおり、最高濃度を 400 nM とする 3 倍 5 点段階希釈で化合物を調製します。
    4. シングルサイクルセットアップを使用してSPRを実行します:モード:高性能。接触時間:90秒;解離時間:600秒;流量:50μL/分各化合物の前にバッファーを 3 回注入し、安定したバックグラウンドを確保します。
    5. データ分析。バッファーの 3 回目の注入を減算の背景として適用します。ネガティブコントロールとして、BRD-2512はPPM1Dへの結合を示しません。BRD-4761 と BRD-5110 では、キネティック フィッティングでは、両方の KD が 1-2 nM であることが示されました。
  5. CRBN:PROTACのSPR:PPM1D三元錯体
    1. ステップ3.3.1の説明に従ってバッファーを準備します。
    2. メーカーのプロトコルに従ってSAチップを活性化し、CRBNを~35 RUに固定化します(0.5 μg/mLのタンパク質溶液を5 μL/minで注入します)。
    3. ステップ 3.2.3 で説明した方法を使用して、ブランクを含むすべてのサンプルで [PPM1D] を 1 μM に保ちながら、最高濃度 30 μM の 3 倍 6 ポイント段階希釈で 3 つの化合物を調製します。
    4. マルチサイクルセットアップを使用してSPRを実行します:モード:高性能。接触時間:60秒;解離時間:90秒;流量:50μL/分
    5. メーカーのソフトウェアを使用してデータ分析を実行します。
      注:BRD-2512およびBRD-4761は応答なしまたは無視できる程度ですが、BRD-5110は、高速オン/オフキネティクスの定常状態で「フック効果」を明確に示しています(図5A-C)。BRD-5110(図5C)の実験的結合応答は、KD(CRBN、cpd)を3または10 μMと仮定した場合のシミュレーションからの予測応答の中間にあり(図5E)、三元KDとバイナリーKDが非常に類似していることを示唆しています。PPM1D: BRD-5110: CRBN複合体形成の明らかな協同性はない。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

VHL:MZ1バイナリー複合体およびVHL:MZ1:Brd4BD2三元複合体の特性評価は、非常に類似したバッファーを使用して、図2(ITC)、図3(BLI)、および図4(SPR)に記載されています。直交アッセイから抽出されたKDは一貫しています。協同性は、KD(二元)/KD(三元)で計算でき、これは非常に正です(ITCから15SPRから26)。

CRBN:PROTAC:PPM1Dシステムの特性評価はSPRによって行われました(図5A-D)。CRBNは、三元複合体形成の観察を容易にするために~35RUに固定化されました。PROTACの結合のみで、ノイズを下回る<2RUの信号が得られました。分析種中のPPM1Dは、SAチップ表面に高いバックグラウンドシグナルを与え、適用できる最高濃度は約1μMです。この値はCRBNと弾頭間のKD≥3μM)よりも低いため、「フック効果」が期待されます。SPRは検出するのに十分な感度があり、シミュレーションとよく一致しています(図5E)。シミュレーションは、文献19非協力平衡と古典的なSPR計算[応答最大=(応答リガンド×質量固定化)/質量リガンド]を組み合わせて行われました。CRBNと化合物のKdは高濃度で不溶性であるため、正確には決定されないため、1 μM、3 μM、10 μM、30 μMの4つの仮定KDを使用してシミュレーションを行いました。実験結果は、シミュレーションされた3μMと10μMの曲線の間にあり、これはバイナリ系のKDとほぼ同じであり、協同性がないことを示唆しています。

Figure 1
1:3つの結合シナリオと異なるKDの定義の図。 (A)古典的な2成分システム。(B)PROTACの一端を飽和させることができる3成分系 したがって、2成分系として評価できます。(C)「フック効果」が観察される3成分系。この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 2
図2:ITCの結果 VHLをMZ1(左)またはMZ1:Brd4BD2 複合体(右)に滴定。 この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 3
図3:BLIの結果 MZ1は、VHL:MZ1:Brd4BD2三元複合体の形成を媒介します。(A) 生データ。(B) [MZ1] = 0 の場合のバックグラウンド信号の減算。(C) k onkoff、KD抽出するための B のキネティック フィッティング。この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 4
図4:SPRの結果 。 (A)VHLへのMZ1結合。(B)MZ1:Brd4BD2 バイナリ複合体のVHLへの結合。 この図の拡大版をご覧になるには、ここをクリックしてください。

Figure 5
図5:代表的なPPM1D-PROTACの「フック効果」を示すSPR結果。 CRBN は SA チップ表面に固定化し、[PPM1D] はすべてのケースで分析種中で 1 μM に保たれました。(A)BRD-2512はCRBNにのみ結合する化合物で、ほとんど反応しません。(B)PPM1Dにのみ結合する化合物であるBRD-4761も反応しません。(C、D)BRD-2512ではCRBNの弾頭、BRD-4761ではPPM1Dの弾頭を持つPROTACであるBRD-5110は、三元複合体の形成を誘導した。(E)CRBNと化合物間の KDが1 μM(黒)、3 μM(青)、10 μM(赤)、または30 μM(緑)であると仮定したSPR結果のシミュレーション。BRD-2512の曲線は3μMから10μMの間であり、これは測定されたバイナリKDに非常に近く、協同性がないことを示唆しています(協同性= 1)。 この図の拡大版をご覧になるには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

PROTAC分子とそのタンパク質結合パートナー間の二元的および三元的相互作用の生物物理学的特性評価は、広く使用されている細胞システムに関してユニークで補完的な洞察を提供することができます。PROTAC分子の各弾頭とそのタンパク質結合パートナーとの間の親和性を理解することは、これらの相互作用の最適化に向けた創薬化学の取り組みの指針となります。以前に発表された三元系PROTAC複合体の結晶構造は、リンカー領域の原子がタンパク質結合パートナーの一方または両方と相互作用を形成することができることを明らかにした16,20。三元系錯体形成の協同性を実験的に決定することは、リンカーの最適化をサポートすることができます。

このレポートでは、PROTAC分子とそのタンパク質結合パートナー間の結合親和性に関する情報を提供できる3つの異なる生物物理学的手法の利用について説明します。メソッド 1 では、PROTAC 分子、MZ1、VHL E3 リガーゼ複合体、および Brd4BD2 ブロモドメインの等温滴定熱量測定 (ITC) 実験セットアップについて詳しく説明します。ITCの結果、MZ1とVHLの間の二元相互作用のKDは59 nM、VHLとプレミックスMZ1およびBrd4BD2の間の三元相互作用は4 nMでした。親和性は、SPR(MZ1 K D = 26 nMへの固定化VHL結合、PPRE-混合MZ1およびBrd4BD2 KD = 1 nMへの固定化VHL結合)およびBLI(KD = 2.8 nM)で観察されたものと一致していました。MZ1へのVHL結合に関するITCKDの結果は報告された値16と一致しているが、得られた化学量論は異なっている。この結果の説明の1つとして考えられるのは、文献の結果がBis-trisベースの緩衝液を使用して生成されたのに対し、ここで説明するプロトコルで使用したHEPESベースの緩衝液へのMZ1の溶解度が低いことです。著者らは、SPR、ITC、BLIで同じバッファー成分を使用することを希望した。

方法2では、固定化VHL、固定濃度のBrd4BD2、およびさまざまな濃度のMZ1の相互作用のBLI分析の実験セットアップについて説明します。この手法の感度の限界により、三元複合体形成のKD、k on、およびkoff値は生成できますがMZ1とタンパク質間のバイナリ相互作用については生成できません。

方法3では、複数のSPRアッセイについて説明します。SPRはBLIよりも感度が高く、タンパク質-低分子(二元)相互作用とタンパク質-タンパク質(三元)相互作用の両方を観察するために適用できます。後者の場合、分析種中のタンパク質が高い不安定なシグナルを発する可能性があるため、バックグラウンドシグナルを注意深く監視する必要があります。SPRは、DMSO、グリセロール、界面活性剤などの高屈折率試薬に非常に敏感です。タンパク質をグリセロールまたは界面活性剤を含むバッファーに保存する場合、ランニングバッファーには、これらの成分の濃度が一致している必要があります。あるいは、サイズ排除クロマトグラフィーを適用することで、SPR実験の前にそれらを完全に除去することができます。バッファーサンプルと分析種サンプルのDMSO濃度を厳密に一致させるように注意する必要があります。DMSO溶媒の補正は、メーカーの指示に従って行われます。

ステップ3.1の方法では、バイナリVHL-MZ1相互作用のSPRアッセイについて説明します。メソッド3.2では、VHLが固定化され、分析対象物がBrd4 BD2単独またはMZ1:Brd4BD2複合体のいずれかであるVHL:MZ1:Brd4 BD2三元複合体のSPRアッセイについて説明します。このシステムでは、Brd4BD2とVHLの間の相互作用はごくわずかです。三元錯体形成は高度に協力的である(ɑ = 26)。三元錯体形成のオフレートは0.014 s-1であり、シングルサイクル速度論を使用する必要があります。ITCの結果は、高度に協調的な三元系複合体形成(ɑ=15)も示しています。ステップ3.3、3.4、および3.5のSPR法では、PROTAC分子BRD-5110の存在によって誘導されるCRBNとPPM1Dの間の複合体の形成を評価するためのアッセイについて説明します。PROTAC分子は、CRBN(KD~3μM)に対して弱い親和性を持ち、PPM1D(KD = 1-2 nM)に対して強い親和性を持っています。その結果、CRBNへの弱い結合は飽和せず、観察された「フック効果」が生じます。実験で用いるDMSO濃度を上げることでリガンドの溶解度を高めることは可能ですが、その場合は、高濃度のDMSOによって悪影響を受ける可能性のあるタンパク質の安定性を注意深く監視することが重要です。さらに、DMSOは溶解熱が高いため、リガンドのタンパク質への結合熱が不明瞭になる可能性があります。シリンジ内の溶液と細胞内の溶液のDMSO濃度を一致させるように注意する必要があります。著者らは、同じ緩衝液調製に対して2つの溶液の透析を推奨している。

一般的な推奨事項とガイドラインは、ここで実行および報告された実験に基づいて提供されます。PROTAC分子とそのタンパク質結合パートナー間の二元相互作用の親和性が強い場合(KD <1 μM)、SPRは、三元複合体形成の協同性に関する貴重な情報とともに、信頼性と再現性のある親和性を提供します。タンパク質結合パートナーの1つとPROTAC分子間のバイナリー相互作用の親和性が弱い場合(KD > 1 μM)、アッセイのセットアップを変更する必要があります。そのような場合、結合定数が固定され、リガンドと分析種の濃度が変化する分子シミュレーションの使用は、アッセイ設計の指針と実験結果の解釈に役立ちます。ITCアッセイは、結合の化学量論に関する重要な情報を提供しますが、SPRおよびBLIと比較して、はるかに多くのタンパク質および化合物試薬を必要とします。さらに、PROTAC分子の溶解度は、ITC実験では制限される可能性があります。BLIはITCよりもスループットが高く、必要なタンパク質や化合物試薬が少なくて済みます。ただし、感度の制限により、BLIは三元複合体の形成を評価するためにのみ使用でき、PROTAC分子とそのタンパク質結合パートナー間のバイナリー相互作用を評価することはできません。SPRは、バイナリーおよび三元PROTAC結合アッセイ、およびSPRの結果の直交バリデーションに使用されるBLIおよびITCアッセイの両方のルーチンテストに使用することをお勧めします。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は、競合する金銭的利益やその他の利益相反を持っていません。

Acknowledgments

この研究は、マサチューセッツ工科大学(MIT)とハーバード大学のブロード研究所の治療薬開発センター(Center for the Development of Therapeutics)からイノベーションと技術開発賞を授与されました。著者らは、この作業を支援してくれたシニアリーダーシップチームのメンバーとレビュー委員会に感謝したいと思います。

Materials

Name Company Catalog Number Comments
96-plate Greiner 655076 flat-bottom, black plates used In BLI experiments
96-well plate Nunc 73520-120 Plate use for ITC sample preparation
96-well plate Greiner 650101 Plate used to prepare samples for SPR experiments
Auto iTC200 micro-calorimeter Malvern Panalytical Instrument used to perform ITC experiments. Product discontinued.
Biacore S200 Cytiva 29136649 Instrument used to perform SPR experiments
MZ1 ProbeChem PC-60099 PROTAC that binds to VHL and Brd4BD2
NTA sensor chip Cytiva BR100532 SPR chip used to perform SPR experiments involving PPM1D
Octet Red-384 Sartorius Instrument used to perform BLI experiments. Product discontinued.
Plate cover Malvern PQA0001 Cover for Nunc 96-well plate (73520-120)
Plate cover Cytiva 28975816 Plate cover for Greiner plate (650101)
Series S SA sensor chip Cytiva BR100531 SPR chip used to perform SPR experiments involving MZ1:VHL:BRD4
Streptavidin (SA) Dip and Read Biosensors Sartorius 18-509 Coated sensors used in BLI experiments

DOWNLOAD MATERIALS LIST

References

  1. Balaji, V., Hoppe, T. Regulation of E3 ubiquitin ligases by homotypic and heterotypic assembly. F1000Research. 9, (2020).
  2. Song, L., Luo, Z. -Q. Post-translational regulation of ubiquitin signaling. Journal of Cell Biology. 218 (6), 1776-1786 (2019).
  3. Yang, Q., Zhao, J., Chen, D., Wang, Y. E3 ubiquitin ligases: styles, structures and functions. Molecular Biomedicine. 2 (1), 23 (2021).
  4. Grice, G. L., Nathan, J. A. The recognition of ubiquitinated proteins by the proteasome. Cellular and Molecular Life Sciences: CMLS. 73 (18), 3497-3506 (2016).
  5. Chirnomas, D., Hornberger, K. R., Crews, C. M. Protein degraders enter the clinic - a new approach to cancer therapy. Nature Reviews Clinical Oncology. 20 (4), 265-278 (2023).
  6. Toure, M., Crews, C. M. Small-molecule PROTACS: New approaches to protein degradation. Angewandte Chemie (International ed. In English). 55 (6), 1966-1973 (2016).
  7. Ottis, P., Toure, M., Cromm, P. M., Ko, E., Gustafson, J. L., Crews, C. M. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chemical Biology. 12 (10), 2570-2578 (2017).
  8. Riching, K. M., et al. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chemical Biology. 13 (9), 2758-2770 (2018).
  9. Nabet, B., et al. The dTAG system for immediate and target-specific protein degradation. Nature Chemical Biology. 14 (5), 431-441 (2018).
  10. Paiva, S. -L., Crews, C. M. Targeted protein degradation: elements of PROTAC design. Current Opinion in Chemical Biology. 50, 111-119 (2019).
  11. Hershko, A., Ciechanover, A. The ubiquitin system. Annual Review of Biochemistry. 67, 425-479 (1998).
  12. Chan, K. -H., Zengerle, M., Testa, A., Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: Comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. Journal of Medicinal Chemistry. 61 (2), 504-513 (2018).
  13. Roy, M. J., et al. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chemical Biology. 14 (3), 361-368 (2019).
  14. Pierce, N. W., Kleiger, G., Shan, S., Deshaies, R. J. Detection of sequential polyubiquitylation on a millisecond timescale. Nature. 462 (7273), 615-619 (2009).
  15. Gadd, M. S., et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nature Chemical Biology. 13 (5), 514-521 (2017).
  16. Nahta, R., Castellino, R. C. Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochemical Pharmacology. 184, 114362 (2021).
  17. Douglass, E. F. Jr, Miller, C. J., Sparer, G., Shapiro, H., Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. Journal of the American Chemical Society. 135 (16), 6092-6099 (2013).
  18. Zorba, A., et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proceedings of the National Academy of Sciences. 115 (31), E7285-E7292 (2018).
  19. Fairhead, M., Howarth, M. Site-specific biotinylation of purified proteins using BirA. Methods in Molecular Biology. 1266, 171-184 (2015).
  20. Nowak, R. P., et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nature Chemical Biology. 14 (7), 706-714 (2018).

Tags

今月のJoVE第203号では、
キメラを標的としたタンパク質分解による三元複合体形成評価のための生物物理学的アッセイの開発と応用(PROTACS)
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Jiang, W., Soutter, H. TheMore

Jiang, W., Soutter, H. The Development and Application of Biophysical Assays for Evaluating Ternary Complex Formation Induced by Proteolysis Targeting Chimeras (PROTACS). J. Vis. Exp. (203), e65718, doi:10.3791/65718 (2024).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter