Summary

蛛网膜下腔出血后脑切片中重要和非重要脑周细胞的成像

Published: August 18, 2023
doi:

Summary

初步调查证实,蛛网膜下腔出血 (SAH) 会导致脑周细胞死亡。评估 SAH 后周细胞收缩力需要区分活的和无活的脑周细胞。因此,已经开发了一种在脑切片中同时标记活和无活脑周细胞的程序,便于使用高分辨率共聚焦显微镜进行观察。

Abstract

周细胞是位于大脑微循环内的关键壁细胞,在通过收缩力调节主动调节脑血流方面发挥着关键作用。传统上,它们的收缩力是通过观察特定情况下的形态变化和附近的毛细管直径变化来衡量的。然而,组织固定后、评估活力和随之而来的成像脑周周细胞的周细胞收缩力会受到影响。同样,对脑周细胞进行基因标记在区分活细胞和非活周细胞方面存在不足,特别是在蛛网膜下腔出血(SAH)等神经系统疾病中,我们的初步研究证实了脑周细胞的死亡。已经设计了一种可靠的方案来克服这些限制,能够在脑切片中同时对功能性和非功能性脑周细胞进行荧光标记。这种标记方法允许高分辨率共聚焦显微镜可视化,同时标记脑切片微血管系统。这种创新方案提供了一种评估脑周细胞收缩性、其对毛细血管直径和周细胞结构的影响的方法。在 SAH 背景下研究脑周细胞收缩力可以深入了解其对脑微循环的影响。

Introduction

脑周细胞以其细长的突起和突出的细胞体为特征,环绕着微循环 1,2。虽然脑血流增加主要由毛细血管扩张驱动,但较小的动脉表现出较慢的扩张速度3。周细胞收缩力对毛细血管直径和周细胞形态产生影响,影响血管动力学4.脑周细胞的收缩导致毛细血管收缩,在病理情况下,过度收缩可能会阻碍红细胞流动5.多种因素,包括从蓝斑释放的去甲肾上腺素,可诱导毛细血管内的脑周细胞收缩6.周细胞在脑血流中起调节作用,表现出 20-HETE 合成,在高氧期间充当氧传感器7。氧化-硝化应激引发的脑周细胞收缩对毛细血管产生不利影响5.尽管对脑周细胞收缩进行了体内体外研究8,但关于脑切片中活和非活脑周细胞成像的知识仍然有限。

至关重要的是,脑周细胞的组织固定后成像会影响其活力和随后的收缩性评估。此外,在神经系统疾病(例如蛛网膜下腔出血 – SAH)等情况下,脑周细胞的转基因标记无法区分活的和无活的周细胞,正如我们初步的 SAH 诱导的脑周细胞死亡研究所证实的那样9.

为了克服这些挑战,我们使用 TO-PRO-3 标记活周细胞,同时用碘化丙啶 (PI) 染色死亡周细胞。我们使用高分辨率共聚焦成像技术来可视化脑切片中活的和无活的脑周细胞,同时在成像过程中保持切片活性。本文旨在提出一种可重复的方法,用于对脑切片中活的和无活的脑周细胞进行成像,作为探究脑周细胞对 SAH 后脑微循环影响的宝贵工具。

Protocol

该实验方案已获得昆明医科大学动物伦理与使用委员会(kmmu20220945)的批准。本研究使用Sprague-Dawley(SD)两性大鼠,300-350g。 1. 诱导SAH模型 使用2%异氟烷和100%氧气麻醉大鼠。通过提供异氟烷(1%-3%)的连续吸入麻醉来维持麻醉。使用立体定位装置固定大鼠的头部(参见 材料表)。 按照以下步骤创建 SAH 模型。将显微注射针插入?…

Representative Results

在正常生理条件下,脑周细胞一般不会发生细胞死亡。 图 6 说明了这种现象,黄色表示存在重要的脑周细胞;脑周细胞未显示 PI 染色,表明其活力。为了进一步研究细胞死亡后周细胞是否仍然附着在微血管系统上,在SAH大鼠模型中采用了方法,并进行了随后的成像。 已经开发了对 SAH 后脑切片中重要和非重要脑周细胞进行成像的方法。如 <strong class="xfig"…

Discussion

开发的是高分辨率共聚焦成像技术,用于可视化重要的脑周细胞、非重要的脑周细胞和脑切片中的微血管系统。在急性大鼠脑切片中,该过程需要用 TO-PRO-311 初始标记周细胞,然后用 IB412 标记微血管内皮细胞;随后,使用PI进行死亡周细胞的鉴定。该协议简单明了,可重复,并且高度适用于功能研究。

为了特异性地追踪神经系统内的脑周细?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该研究得到了国家自然科学基金(81960226,81760223)的资助;云南省自然科学基金(202001AS070045,202301AY070001-011)

Materials

6-well plate ABC biochemistry ABC703006 RT
Adobe Photoshop Adobe Adobe Illustrator CS6 16.0.0 RT
Aluminium foil MIAOJIE 225 mm x 273 mm RT
CaCl2·2H2O Sigma-Aldrich C3881 RT
Confocal imaging software Nikon NIS-Elements 4.10.00 RT
Confocal Laser Scanning Microscope Nikon N-SIM/C2si RT
Gas tank (5% CO2, 95% O2) PENGYIDA 40L RT
Glass Bottom Confocal Dishes Beyotime FCFC020-10pcs RT
Glucose Sigma-Aldrich G5767 RT
Glue EVOBOND KH-502 RT
Ice machine XUEKE IMS-20 RT
Image analysis software National Institutes of Health Image J RT
Inhalation anesthesia system SCIENCE QAF700 RT
Isolectin B 4-FITC SIGMA L2895–2MG Store aliquots at –20 °C
KCl Sigma-Aldrich 7447–40–7 RT
KH2PO4 Sigma-Aldrich P0662 RT
MgSO4 Sigma-Aldrich M7506 RT
NaCl Sigma-Aldrich 7647–14–5 RT
NaH2PO4·H2O Sigma-Aldrich 10049–21–5 RT
NaHCO3 Sigma-Aldrich S5761 RT
Pasteur pipette NEST Biotechnology 318314 RT
Peristaltic Pump Scientific Industries Inc Model 203 RT
Propidium (Iodide) Med Chem Express HY-D0815/CS-7538 Store aliquots at –20 °C
Stereotaxic apparatus SCIENCE QA RT
Syringe pump Harvard PUMP PUMP 11 ELITE Nanomite RT
Thermostatic water bath OLABO HH-2 RT
Vibrating microtome Leica VT1200 RT

References

  1. Dalkara, T., Gursoy-Ozdemir, Y., Yemisci, M. Brain microvascular pericytes in health and disease. Acta Neuropathologica. 122 (1), 1-9 (2011).
  2. Dore-Duffy, P., Cleary, K. Morphology and properties of pericytes. Methods in Molecular Biology (Clifton, N.J). 686, 49-68 (2011).
  3. Peppiatt, C. M., Howarth, C., Mobbs, P., Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 443 (7112), 700-704 (2006).
  4. Attwell, D., Mishra, A., Hall, C. N., O’Farrell, F. M., Dalkara, T. What is a pericyte. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 36 (2), 451-455 (2016).
  5. Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K., Dalkara, T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Medicine. 15 (9), 1031-1037 (2009).
  6. Korte, N., et al. Noradrenaline released from locus coeruleus axons contracts cerebral capillary pericytes via α2 adrenergic receptors. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. , (2023).
  7. Hirunpattarasilp, C., Barkaway, A., Davis, H., Pfeiffer, T., Sethi, H., Attwell, D. Hyperoxia evokes pericyte-mediated capillary constriction. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 42 (11), 2032-2047 (2022).
  8. Neuhaus, A. A., Couch, Y., Sutherland, B. A., Buchan, A. M. Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism. 37 (6), 2013-2024 (2017).
  9. Gong, Y., et al. Increased TRPM4 Activity in cerebral artery myocytes contributes to cerebral blood flow reduction after subarachnoid hemorrhage in rats. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics. 16 (3), 901-911 (2019).
  10. Mai-Morente, S. P., et al. Pericyte mapping in cerebral slices with the far-red fluorophore TO-PRO-3. Bio-protocol. 11 (22), e4222 (2021).
  11. Mai-Morente, S. P., Marset, V. M., Blanco, F., Isasi, E. E., Abudara, V. A nuclear fluorescent dye identifies pericytes at the neurovascular unit. Journal of Neurochemistry. 157 (4), 1377-1391 (2021).
  12. Zhao, H., et al. Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 77 (4), 399-405 (2010).
  13. Van Hooijdonk, C. A., Glade, C. P., Van Erp, P. E. TO-PRO-3 iodide: A novel HeNe laser-excitable DNA stain as an alternative for propidium iodide in multiparameter flow cytometry. Cytometry. 17 (2), 185-189 (1994).
  14. Lacar, B., Herman, P., Platel, J. C., Kubera, C., Hyder, F., Bordey, A. Neural progenitor cells regulate capillary blood flow in the postnatal subventricular zone. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 32 (46), 16435-16448 (2012).
  15. Mai-Morente, S. P., Marset, V. M., Blanco, F., Isasi, E. E., Abudara, V. A nuclear fluorescent dye identifies pericytes at the neurovascular unit. Journal of Neurochemistry. 157 (4), 1377-1391 (2021).
  16. Hezel, M., Ebrahimi, F., Koch, M., Dehghani, F. Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain. Micron (Oxford, England). 43 (10), 1031-1038 (2012).
  17. Mathiisen, T. M., Lehre, K. P., Danbolt, N. C., Ottersen, O. P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia. 58 (9), 1094-1103 (2010).
check_url/65873?article_type=t

Play Video

Cite This Article
Zhang, Y., Li, Y., Yu, H., Li, C., Deng, H., Dong, Y., Li, G., Wang, F. Imaging Vital and Non-vital Brain Pericytes in Brain Slices following Subarachnoid Hemorrhage. J. Vis. Exp. (198), e65873, doi:10.3791/65873 (2023).

View Video