In JoVE (1)

Other Publications (22)

Articles by Gwendolyn Kartje in JoVE

 JoVE Medicine

Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability

1Wolfson Centre for Age-Related Diseases, King's College London, University of London, 2Department of Neuroimaging, James Black Centre, Institute of Psychiatry, King's College London, University of London, 3Institute of Neuroscience and Psychology, Wellcome Surgical Institute, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, 4Research Service, Edward Hines Jr. VA Hospital, 5Neurology Service, Edward Hines Jr. VA Hospital, 6Department of Molecular Pharmacology and Therapeutics, Neuroscience Research Institute, Loyola University Chicago, 7Department of Oncology, The Gray Institute for Radiation, Oncology and Biology, University of Oxford


JoVE 53106

Other articles by Gwendolyn Kartje on PubMed

Functional Recovery and Neuroanatomical Plasticity Following Middle Cerebral Artery Occlusion and IN-1 Antibody Treatment in the Adult Rat

Annals of Neurology. Apr, 2002  |  Pubmed ID: 11921049

Stroke is a prevalent and devastating disorder, and no treatment is currently available to restore lost neuronal function after stroke occurs. One unique therapy that may improve functional recovery after stroke is blockade of the neurite inhibitory protein Nogo-A with the monoclonal antibody IN-1, through enhancement of neuroanatomical plasticity from uninjured areas of the central nervous system. In the present study, we combined IN-1 treatment with an ischemic lesion (permanent middle cerebral artery occlusion) to determine the effect of Nogo-A neutralization on cortical plasticity and functional recovery. We report here that, following ischemic stroke and treatment with IN-1, adult rats demonstrated functional recovery on a forelimb-reaching task and new cortico-efferent projections from the opposite, unlesioned hemisphere. These results support the efficacy of Nogo-A blockade as a treatment for ischemic stroke and implicate plasticity from the unlesioned hemisphere as a mechanism for recovery.

Functional Reorganization of the Motor Cortex in Adult Rats After Cortical Lesion and Treatment with Monoclonal Antibody IN-1

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Jun, 2003  |  Pubmed ID: 12832504

We previously reported anatomical plasticity in the adult motor cortex after a unilateral sensorimotor cortex (SMC) lesion and treatment with monoclonal antibody (mAb) IN-1, which permits neurite outgrowth from the intact, opposite cortex into deafferented subcortical targets. This study was designed to investigate whether treatment with the mAb IN-1 after SMC lesion in the adult leads to functional reorganization of the intact, opposite motor cortex. Adult rats underwent unilateral SMC aspiration lesion and treatment with either mAb IN-1 or control antibody, or no treatment. After a 6 week survival period, the intact, opposite forelimb motor cortex was explored using intracortical microstimulation to evoke forelimb movements. A dramatic increase in ipsilateral movements of the lesion-impaired forelimb was found in animals treated with mAb IN-1 compared with control animals. These results resembled our previous findings of cortical reorganization in the spared hemisphere after neonatal cortical lesion and without any additional treatment. These results show that, after adult cortical lesion, treatment with mAb IN-1 induces a functional reorganization of the intact, opposite motor cortex.

Behavioral Recovery and Anatomical Plasticity in Adult Rats After Cortical Lesion and Treatment with Monoclonal Antibody IN-1

Behavioural Brain Research. Jul, 2004  |  Pubmed ID: 15196799

We have previously reported that monoclonal antibody (mAb) IN-1 treatment after ischemic infarct in adult rats results in significant recovery of skilled forelimb use. Such recovery was correlated with axonal outgrowth from the intact, opposite motor cortex into deafferented subcortical motor areas. In the present study, we investigated the effects of mAb IN-1 treatment after adult sensorimotor cortex (SMC) aspiration lesion on behavioral recovery and neuroanatomical plasticity in the corticospinal tract. Adult rats underwent unilateral SMC aspiration lesion and treatment with either mAb IN-1 or a control Ab, or no treatment. Animals were then tested over a 6-week period in the skilled forelimb use task and the skilled ladder rung walking task. We found that animals treated with mAb IN-1 after SMC lesion fully recovered the use of forelimb reaching, but showed no improvement in digit grasping as tested in the skilled forelimb use task. The mAb IN-1 treatment group was also significantly improved as compared to control groups in the skilled ladder rung walking test. Furthermore, neuroanatomical tracing revealed a significant increase in the corticospinal projections into the deafferented motor areas of the spinal cord after mAb IN-1 treatment. These results indicate that treatment with mAb IN-1 after cortical aspiration lesion induces remodeling of motor pathways resulting in recovery in only certain behavioral tasks, suggesting that the cause of brain damage influences behavioral recovery after mAb IN-1 treatment.

Delayed Treatment with Monoclonal Antibody IN-1 1 Week After Stroke Results in Recovery of Function and Corticorubral Plasticity in Adult Rats

Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism. Oct, 2005  |  Pubmed ID: 15889044

Neuronal death due to ischemic stroke results in permanent deficits in sensory, language, and motor functions. The growth-restrictive environment of the adult central nervous system (CNS) is an obstacle to functional recovery after stroke and other CNS injuries. In this regard, Nogo-A is a potent neurite growth-inhibitory protein known to restrict neuronal plasticity in adults. Previously, we have found that treatment with monoclonal antibody (mAb) IN-1 to neutralize Nogo-A immediately after stroke enhanced motor cortico-efferent plasticity and recovery of skilled forelimb function in rats. However, immediate treatment for stroke is often not clinically feasible. Thus, the present study was undertaken to determine whether cortico-efferent plasticity and functional recovery would occur if treatment with mAb IN-1 was delayed 1 week after stroke. Adult rats were trained on a forelimb-reaching task, and the middle cerebral artery was occluded to induce focal cerebral ischemia to the forelimb sensorimotor cortex. After 1 week, animals received mAb IN-1 treatment, control antibody, or no treatment, and were tested for 9 more weeks. To assess cortico-efferent plasticity, the sensorimotor cortex opposite the stroke lesion was injected with an anterograde neuroanatomical tracer. Behavioral analysis demonstrated a recovery of skilled forelimb function, and anatomical studies revealed neuroplasticity at the level of the red nucleus in animals treated with mAb IN-1, thus demonstrating the efficacy of this treatment even if administered 1 week after stroke.

Experimental Diabetes Attenuates Cerebral Cortical-evoked Forelimb Motor Responses

Diabetes. Sep, 2005  |  Pubmed ID: 16123367

Poorly controlled diabetes leads to debilitating peripheral complications, including retinopathy, nephropathy, and neuropathy. Chronic diabetes also impairs the central nervous system (CNS), leading to measurable deficits in cognition, somatosensory, and motor function. The cause of diabetes-associated CNS impairment is unknown. In this study, sustained hyperglycemia resulting from insulin deficiency was shown to contribute to CNS motor dysfunction. Experimental diabetes was induced in rats by streptozotocin (STZ) injection. CNS motor function was assessed by intracortical microstimulation of the sensorimotor cortex. Experimental diabetes significantly (P < 0.01; n = 14) attenuated the number of motor cortical sites eliciting forelimb movements. The net area of the motor cortex representing the forelimb in diabetic rats was significantly reduced (4.0 +/- 0.5 [control] vs. 2.4 +/- 0.4 [STZ] mm(2); P < 0.05). Experimental diabetes attenuated the activation of some, but not all, forelimb motor cortical neurons. Insulin treatment of diabetic rats prevented the attenuation of cortical-evoked forelimb responses. Peripheral nerve-evoked responses were unaffected by this short period of diabetes, suggesting the absence of peripheral nerve dysfunction. This study showed that metabolic imbalance resulting from insulin deficiency elicits a marked attenuation of cortical-evoked motor function. Uncontrolled hyperglycemia, deficiencies of central insulin, or both may contribute to corticospinal motor dysfunction.

Recovery and Brain Reorganization After Stroke in Adult and Aged Rats

Annals of Neurology. Dec, 2005  |  Pubmed ID: 16315284

Stroke is a prevalent and devastating disorder, and no treatment is currently available to restore lost neuronal function after stroke. One unique therapy that improves recovery after stroke is neutralization of the neurite inhibitory protein Nogo-A. Here, we show, in a clinically relevant model, improved functional recovery and brain reorganization in the aged and adult rat when delayed anti-Nogo-A therapy is given after ischemic injury. These results support the efficacy of Nogo-A neutralization as treatment for ischemic stroke, even in the aged animal and after a 1-week delay, and implicate neuronal plasticity from unlesioned areas of the central nervous system as a mechanism for recovery.

Dendritic Plasticity in the Adult Rat Following Middle Cerebral Artery Occlusion and Nogo-a Neutralization

Cerebral Cortex (New York, N.Y. : 1991). Apr, 2006  |  Pubmed ID: 16033928

Our work has shown that following focal ischemic lesion in adult rats, neutralization of the axon growth inhibitor Nogo-A with the monoclonal antibody (mAb) IN-1 results in functional recovery. Furthermore, new axonal connections were formed from the contralesional cortex to subcortical areas corresponding to the observed functional recovery. The present study investigated whether dendritic changes, also known to subserve functional recovery, paralleled the axonal plasticity shown after ischemic lesion and treatment with mAb IN-1. Golgi-Cox-stained layer V pyramidal neurons in the contralesional sensorimotor cortex were examined for evidence of dendritic sprouting. Results demonstrated increased dendritic arborization and spine density in the mAb IN-1-treated animals with lesion. Interestingly, administration of mAb IN-1 without lesion resulted in transient dendritic outgrowth with no change in spine density. These results suggest a novel role for Nogo-A in limiting dendritic plasticity after stroke.

Visual Cortical Plasticity Following Unilateral Sensorimotor Cortical Lesions in the Neonatal Rat

Experimental Neurology. May, 2006  |  Pubmed ID: 16690056

Previous work has shown that unilateral sensorimotor cortex (SMC) lesions in newborn rats resulted in an apparent shift of the motor cortex map in the spared hemisphere, particularly of the hindlimb cortex. In view of such findings, the present study was initiated to determine if the visual cortex located both ipsilateral and contralateral to neonatal SMC, or contralateral to occipital cortical (OC) lesions, would show similar remodeling. Visual evoked potentials (VEPs) were used to map the visual cortex electrophysiologically. The results show an expansion of the visual cortex, in both the contralateral and ipsilateral hemisphere, into normally motor cortical areas in adult animals that had sustained unilateral neonatal unilateral SMC lesions. In contrast, similar changes were not seen within the spared visual cortex after unilateral occipital cortical lesions, suggesting that the shift in the visual map was specifically in response to the SMC lesion and was not a generalized response to neonatal cortical damage. Histological analysis showed a functional expansion in the rostral boundary of visual cortex with no corresponding cytoarchitectural alterations.

Axonal Plasticity is Associated with Motor Recovery Following Amphetamine Treatment Combined with Rehabilitation After Brain Injury in the Adult Rat

Brain Research. Sep, 2006  |  Pubmed ID: 16920088

Clinical and laboratory studies have suggested that amphetamine treatment when paired with rehabilitation results in improved recovery of function after stroke or traumatic brain injury. In the present study, we investigated whether new anatomical pathways developed in association with improved motor function after brain damage and amphetamine treatment linked with rehabilitation. Following a unilateral sensorimotor cortex lesion in the adult rat, amphetamine (2 mg/kg) was administered in conjunction with physiotherapy sessions on postoperative days two and five. Physiotherapy was continued twice daily for the first 3 weeks after injury, and then once daily until week six. Performance on skilled forelimb reaching and ladder rung walking was used to assess motor improvement. Our results show that animals with sensorimotor cortical lesions receiving amphetamine treatment linked with rehabilitation had significant improvement in both tasks. Neuroanatomical tracing of efferent pathways from the opposite, non-damaged cortex resulted in the novel finding that amphetamine treatment linked with rehabilitation, significantly increased axonal growth in the deafferented basilar pontine nuclei. These results support the notion that pharmacological interventions paired with rehabilitation can enhance neuronal plasticity and thereby improve functional recovery after CNS injury.

Intrathecal Treatment with Anti-Nogo-A Antibody Improves Functional Recovery in Adult Rats After Stroke

Experimental Brain Research. Sep, 2007  |  Pubmed ID: 17717658

Stroke often results in devastating neurological disabilities with no specific treatment available to improve functional recovery. Neurite growth inhibitory proteins such as Nogo-A play a critical role in impeding regain of function after stroke. We have reported that treatment with anti-Nogo-A antibody using the intracerebroventricular route resulted in improvement of function and neuroplasticity in adult or aged rats after stroke. This present study tested a more clinically accessible route for applying anti-Nogo-A antibodies, the intrathecal route. Anti-Nogo-A or control antibody was administered intrathecally at lower lumbar levels 1 week after middle cerebral artery occlusion in adult rats. Our results show that anti-Nogo-A antibody delivered by this intrathecal route for 2 weeks penetrated into brain parenchyma and bound to myelin-enriched structures such as the corpus callosum and striatal white matter. Animals receiving anti-Nogo-A antibody treatment significantly improved recovery of function on the skilled forelimb reaching task as compared to stroke only and stroke/control antibody animals. These findings show that anti-Nogo-A antibody delivered through the intrathecal route is as effective in restoring lost functions after stroke as the intracerebroventricular route. This is of great importance for the future application of anti-Nogo-A immunotherapy for ischemic stroke treatment.

Nogo-A Inhibition Induces Recovery from Neglect in Rats

Behavioural Brain Research. Mar, 2008  |  Pubmed ID: 17963852

Neglect is a complex human cognitive spatial disorder typically induced by damage to prefrontal or posterior parietal association cortices. Behavioral treatments for neglect rarely generalize outside of the therapeutic context or across tasks within the same therapeutic context. Recovery, when it occurs, is spontaneous over the course of weeks to months, but often it is incomplete. A number of studies have indicated that anti-Nogo-A antibodies can be used to enhance plasticity and behavioral recovery following damage to motor cortex, and spinal cord. In the present studies the anti-Nogo-A antibodies IN-1, 7B12, or 11C7 were applied intraventricularly to adult rats demonstrating severe neglect produced by unilateral medial agranular cortex lesions in rats. The three separate anti-Nogo-A antibody groups were treated immediately following the medial agranular cortex lesions. Each of the three antibodies induced dramatic significant behavioral recovery from neglect relative to controls. Severing the corpus callosum to destroy inputs from the contralesional hemisphere resulted in reinstatement of severe neglect, pointing to a possible role of interhemispheric mechanisms in behavioral recovery from neglect.

Neuronal Plasticity and Functional Recovery After Ischemic Stroke

Topics in Stroke Rehabilitation. Jan-Feb, 2008  |  Pubmed ID: 18250073

Ischemic stroke affects many new patients each year. The sequelae of brain ischemia can include lasting sensorimotor and cognitive deficits, which negatively impact quality of life. Currently, treatment options for improving poststroke deficits are limited, and the development of new clinical alternatives to improve functional recovery after stroke is actively under investigation. Anti-Nogo-A immunotherapy to reduce the central nervous system inhibitory environment, cell transplantation strategies, pharmacological agents, and movement-based therapies represent emerging treatments of poststroke deficits through enhancement of neuroanatomical plasticity.

Nogo-A Expression After Focal Ischemic Stroke in the Adult Rat

Stroke; a Journal of Cerebral Circulation. Jul, 2008  |  Pubmed ID: 18467652

The Nogo-A protein is an important inhibitor of axonal remodeling after central nervous system injuries, including ischemic stroke. Interfering with the function of Nogo-A via infusion of a therapeutic anti-Nogo-A antibody after stroke increases neuronal remodeling and enhances functional recovery in rats. In this study, we describe the regional distribution of cortical neurons expressing Nogo-A in normal rats and following middle cerebral artery occlusion (MCAO).

Quantification of Synaptic Density in Corticostriatal Projections from Rat Medial Agranular Cortex

Brain Research. Oct, 2008  |  Pubmed ID: 18691563

Medial agranular cortex (AGm) has a prominent bilateral projection to the dorsocentral striatum (DCS). We wished to develop a normal baseline by which to assess neuronal plasticity in this corticostriatal system in rats with neglect resulting from a unilateral lesion in AGm, followed by treatment with agents that promote sprouting and functional recovery in other systems. Injections of biotinylated dextran amine were made into AGm in normal rats, and unbiased sampling was used to quantify the density of axons and axonal varicosities present in DCS (the latter represent presynaptic profiles). Labeling density in contralateral DCS is approximately half of that seen in ipsilateral DCS (this ratio is 0.50 for axons, 0.55 for varicosities). The ratio of varicosities is stable over a greater than seven-fold range of absolute densities. There is no consistent relationship between the absolute density of axons and axon varicosities; however, the ratio measures are strongly correlated. We conclude that changes in the contralateral/ipsilateral ratio of axon density after experimental treatments do reflect changes in synaptic density, but axon varicosities are likely to be the most sensitive anatomical parameter by which to assess plasticity at the light microscopic level.

Motor Recovery and Axonal Plasticity with Short-term Amphetamine After Stroke

Stroke; a Journal of Cerebral Circulation. Jan, 2009  |  Pubmed ID: 19038917

There is considerable debate regarding the efficacy of amphetamine to facilitate motor recovery after stroke or experimental brain injury. Different drug dosing and timing schedules and differing physical rehabilitation strategies may contribute to outcome variability. The present study was designed to ascertain (1) whether short-term amphetamine could induce long-term functional motor recovery in rats after an ischemic lesion modeling stroke in humans; (2) how different levels of physical rehabilitation interact with amphetamine to enhance forelimb-related functional outcome; and (3) whether motor improvement was associated with axonal sprouting from intact corticoefferent pathways originating in the contralesional forelimb motor cortex.

Cognitive Recovery in the Aged Rat After Stroke and Anti-Nogo-A Immunotherapy

Behavioural Brain Research. Apr, 2010  |  Pubmed ID: 20035795

We have previously shown that immunotherapy directed against the protein Nogo-A leads to recovery on a skilled forelimb reaching task in rats after sensorimotor cortex stroke, which correlated with axonal and dendritic plasticity. Here we investigated anti-Nogo-A immunotherapy as an intervention to improve performance on a spatial memory task in aged rats after stroke, and whether cognitive recovery was correlated with structural plasticity. Aged rats underwent a unilateral distal permanent middle cerebral artery occlusion and one week later were treated with an anti-Nogo-A or control antibody. Nine weeks post-stroke, treated rats and normal aged rats were tested on the Morris water maze task. Following testing rats were sacrificed and brains processed for the Golgi-Cox method. Hippocampal CA3 and CA1 pyramidal and dentate gyrus granule cells were examined for dendritic length and number of branch segments, and CA3 and CA1 pyramidal cells were examined for spine density and morphology. Anti-Nogo-A immunotherapy given one week following stroke in aged rats improved performance on the reference memory portion of the Morris water maze task. However, this improved performance was not correlated with structural changes in the hippocampal neurons examined. Our finding of improved performance on the Morris water maze in aged rats after stroke and treatment with anti-Nogo-A immunotherapy demonstrates the promising therapeutic potential for anti-Nogo-A immunotherapy to treat cognitive deficits after stroke. The identification of sites of axonal and dendritic plasticity in the aged brain after stroke and treatment with anti-Nogo-A immunotherapy is still under investigation.

Long-term Motor Improvement After Stroke is Enhanced by Short-term Treatment with the Alpha-2 Antagonist, Atipamezole

Brain Research. Jul, 2010  |  Pubmed ID: 20510888

Drugs that increase central noradrenergic activity have been shown to enhance the rate of recovery of motor function in pre-clinical models of brain damage. Less is known about whether noradrenergic agents can improve the extent of motor recovery and whether such improvement can be sustained over time. This study was designed to determine if increasing central noradrenergic tone using atipamezole, an alpha-2 adrenoceptor antagonist, could induce a long-term improvement in motor performance in rats subjected to ischemic brain damage caused by permanent middle cerebral artery occlusion. The importance of pairing physical "rehabilitation" with enhanced noradrenergic activity was also investigated. Atipamezole (1 mg/kg, s.c.) or vehicle (sterile saline) was administered once daily on Days 2-8 post-operatively. Half of each drug group was housed under enriched environment conditions supplemented with daily focused activity sessions while the other half received standard housing with no focused activity. Skilled motor performance in forelimb reaching and ladder rung walking was assessed for 8 weeks post-operatively. Animals receiving atipamezole plus rehabilitation exhibited significantly greater motor improvement in both behavioral tests as compared to vehicle-treated animals receiving rehabilitation. Interestingly, animals receiving atipamezole without rehabilitation exhibited a significant motor improvement in the ladder rung walk test but not the forelimb reaching test. These results suggest that a short-term increase in noradrenergic activity can lead to sustained motor improvement following stroke, especially when paired with rehabilitation.

Delayed Anti-nogo-a Therapy Improves Function After Chronic Stroke in Adult Rats

Stroke; a Journal of Cerebral Circulation. Jan, 2011  |  Pubmed ID: 21088244

we have shown that anti-Nogo-A immunotherapy to neutralize the neurite growth inhibitory protein Nogo-A results in functional improvement and enhanced plasticity after ischemic stroke in the adult rat. The present study investigated whether functional improvement and neuronal plasticity can be induced by this immunotherapy when administered to the chronic stroke-impaired rat.

Kinematic Analysis of Motor Recovery with Human Adult Bone Marrow-derived Somatic Cell Therapy in a Rat Model of Stroke

Neurorehabilitation and Neural Repair. Sep, 2012  |  Pubmed ID: 22619255

The extent to which pharmaceutical and behavioral therapies following central nervous system injury may either deter or encourage the development of compensatory movement patterns is a topic of considerable interest in neurorehabilitation. However, functional outcome measures alone are relatively insensitive to compensatory changes in movement patterns per se.

Evidence for Fibroblast Growth Factor-2 As a Mediator of Amphetamine-enhanced Motor Improvement Following Stroke

PloS One. 2014  |  Pubmed ID: 25229819

Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte-conditioned media. Taken together the present results suggest that noradrenergic activation, when combined with physical therapy, can improve motor recovery following ischemic damage by stimulating the formation of new neural pathways in an FGF-2-dependent manner.

Binge Ethanol Prior to Traumatic Brain Injury Worsens Sensorimotor Functional Recovery in Rats

PloS One. 2015  |  Pubmed ID: 25768795

A significant number of patients suffering from traumatic brain injury (TBI) have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function. We trained adult, male, Sprague Dawley rats on the skilled forelimb reaching task and then administered a single binge dose of ethanol (2 g/kg, i.p.) or saline for three consecutive days (for a total of 3 doses). One hour after the final ethanol dose, rats underwent a TBI to the sensorimotor cortex corresponding to the preferred reaching forelimb. Animals were then tested for seven weeks on the skilled forelimb reaching task to assess the profile of recovery. We found that the group given ethanol prior to TBI displayed a slower recovery curve with a lower recovery plateau as compared to the control group. Therefore, even a relatively short (3 day) episode of binge alcohol exposure can negatively impact long-term recovery from a TBI, underscoring this significant public health problem.

Correction: Binge Ethanol Prior to Traumatic Brain Injury Worsens Sensorimotor Functional Recovery in Rats

PloS One. 2016  |  Pubmed ID: 26872265

[This corrects the article DOI: 10.1371/journal.pone.0120356.].

Waiting
simple hit counter