In JoVE (1)

Other Publications (2)

Articles by Lisa A. Roy in JoVE

 JoVE Medicine

Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability

1Wolfson Centre for Age-Related Diseases, King's College London, University of London, 2Department of Neuroimaging, James Black Centre, Institute of Psychiatry, King's College London, University of London, 3Institute of Neuroscience and Psychology, Wellcome Surgical Institute, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, 4Research Service, Edward Hines Jr. VA Hospital, 5Neurology Service, Edward Hines Jr. VA Hospital, 6Department of Molecular Pharmacology and Therapeutics, Neuroscience Research Institute, Loyola University Chicago, 7Department of Oncology, The Gray Institute for Radiation, Oncology and Biology, University of Oxford


JoVE 53106

Other articles by Lisa A. Roy on PubMed

Iodothyronine Interactions with the System L1 Amino Acid Exchanger in 3T3-L1 Adipocytes

Journal of Thyroid Research. 2010  |  Pubmed ID: 21048841

Thyroid hormones enter isolated white adipocytes largely by a System L1-type amino acid transporter en route to exerting genomic actions. Differentiated 3T3-L1 mouse adipocytes in culture express mRNA for LAT1 (the catalytic subunit of high-affinity System L1). L-[(125)I]-T(3) uptake into 3T3-L1 adipocytes included a substantial saturable component inhibited by leucine. L-[(3)H]phenylalanine uptake into 3T3-L1 cells was saturable (K(m) of 31 μM), competitively inhibited by T(3) (K(i) of 1.2 μM) and blocked by leucine, BCH, and rT(3) as expected for substrate interactions of System L1. Efflux of preloaded L-[(3)H]phenylalanine from 3T3-L1 adipocytes was trans stimulated by external leucine, demonstrating the obligatory exchange mechanism of System L1 transport. T(3) (10 μM) did not significantly trans stimulate L-[(3)H]phenylalanine efflux, but did competitively inhibit the trans stimulatory effect of 10 μM leucine. The results highlight strong competitive interactions between iodothyronines (T(3), rT(3)) and amino acids for transport by System L1 in adipocytes, which may impact cellular iodothyronine exchanges during altered states of protein nutrition.

Hyperglycemia Accelerates Apparent Diffusion Coefficient-defined Lesion Growth After Focal Cerebral Ischemia in Rats with and Without Features of Metabolic Syndrome

Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism. Oct, 2013  |  Pubmed ID: 23838826

Poststroke hyperglycemia is associated with a poor outcome yet clinical management is inadequately informed. We sought to determine whether clinically relevant levels of hyperglycemia exert detrimental effects on the early evolution of focal ischemic brain damage, as determined by magnetic resonance imaging, in normal rats and in those modeling the 'metabolic syndrome'. Wistar Kyoto (WKY) or fructose-fed spontaneously hypertensive stroke-prone (ffSHRSP) rats were randomly allocated to groups for glucose or vehicle administration before permanent middle cerebral artery occlusion. Diffusion-weighted imaging was carried out over the first 4 hours after middle cerebral artery occlusion and lesion volume calculated from apparent diffusion coefficient maps. Infarct volume and immunostaining for markers of oxidative stress were measured in the fixed brain sections at 24 hours. Hyperglycemia rapidly exacerbated early ischemic damage in both WKY and ffSHRSP rats but increased infarct volume only in WKY rats. There was only limited evidence of oxidative stress in hyperglycemic animals. Acute hyperglycemia, at clinically relevant levels, exacerbates early ischemic damage in both normal and metabolic syndrome rats. Management of hyperglycemia may have greatest benefit when performed in the acute phase after stroke in the absence or presence of comorbidities.

Waiting
simple hit counter