In JoVE (1)

Other Publications (76)

Articles by Satoshi Inoue in JoVE

Other articles by Satoshi Inoue on PubMed

FOXP1, an Estrogen-inducible Transcription Factor, Modulates Cell Proliferation in Breast Cancer Cells and 5-year Recurrence-free Survival of Patients with Tamoxifen-treated Breast Cancer

Hormones & Cancer. Oct, 2011  |  Pubmed ID: 21901488

Breast cancer is primarily a hormone-dependent tumor that can be regulated by the status of steroid hormones, including estrogen and progesterone. Forkhead box P1 (FOXP1) is a member of the forkhead box transcription factor family and has been reported to be associated with various types of tumors. In the present study, we investigated the expression of FOXP1 in 133 human invasive breast cancers, obtained by core biopsy, by immunohistochemical analysis. Nuclear immunoreactivity of FOXP1 was detected in 89 cases (67%) and correlated positively with tumor grade and hormone receptor status, including estrogen receptor alpha (ERα) and progesterone receptor, and negatively with pathological tumor size. In ERα-positive MCF-7 breast cancer cells, we demonstrated that FOXP1 mRNA was upregulated by estrogen and increased ERα recruitment to ER binding sites identified by ChIP-on-chip analysis within the FOXP1 gene region. We also demonstrated that proliferation of MCF-7 cells was increased by exogenously transfected FOXP1 and decreased by FOXP1-specific siRNA. Furthermore, FOXP1 enhanced estrogen response element-driven transcription in MCF-7 cells. Finally, FOXP1 immunoreactivity was significantly elevated in relapse-free breast cancer patients treated with tamoxifen. These results suggest that FOXP1 plays an important role in proliferation of breast cancer cells by modulating estrogen signaling and that FOXP1 immunoreactivity could be associated with the estrogen dependency of clinical breast cancers, which may predict favorable prognosis in the patients treated with tamoxifen.

Molecular Epidemiology of Rabies Virus in Vietnam (2006-2009)

Japanese Journal of Infectious Diseases. 2011  |  Pubmed ID: 21937820

This study was aimed at determining the molecular epidemiology of rabies virus (RABV) circulating in Vietnam. Intra vitam samples (saliva and cerebrospinal fluid) were collected from 31 patients who were believed to have rabies and were admitted to hospitals in northern provinces of Vietnam. Brain samples were collected from 176 sick or furious rabid dogs from all over the country. The human and canine samples were subjected to reverse transcription-polymerase chain reaction analysis. The findings showed that 23 patients tested positive for RABV. Interestingly, 5 rabies patients did not have any history of dog or cat bites, but they had an experience of butchering dogs or cats, or consuming their meat. RABV was also detected in 2 of the 100 sick dogs from slaughterhouses. Molecular epidemiological analysis of 27 RABV strains showed that these viruses could be classified into two groups. The RABVs classified into Group 1 were distributed throughout Vietnam and had sequence similarity with the strains from China, Thailand, Malaysia, and the Philippines. However, the RABVs classified into Group 2 were only found in the northern provinces of Vietnam and showed high sequence similarity with the strain from southern China. This finding suggested the recent influx of Group 2 RABVs between Vietnam and China across the border. Although the incidence of rabies due to circulating RABVs in slaughterhouses is less common than that due to dog bite, the national program for rabies control and prevention in Vietnam should include monitoring of the health of dogs meant for human consumption and vaccination for workers at dog slaughterhouses. Further, monitoring of and research on the circulating RABVs in dog markets may help to determine the cause of rabies and control the spread of rabies in slaughterhouses in Vietnam.

Association of Elastin Gene Polymorphism to Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy

Investigative Ophthalmology & Visual Science. 2011  |  Pubmed ID: 22003121

To see if there is an association in Japanese between elastin gene (ELN) polymorphisms and neovascular age-related macular degeneration (AMD) or its subtypes, typical AMD (tAMD) and polypoidal choroidal vasculopathy (PCV).

Heterogeneity of the Efficacy of the 23-valent Pneumococcal Polysaccharide Vaccine Caused by Various Underlying Conditions of Chronic Pulmonary Disease in Older Patients: Prospective Cohort Study

BMJ Open. Jan, 2011  |  Pubmed ID: 22021764

To determine the ideal conditions for use of the 23-valent pneumococcal polysaccharide vaccine (PPV23) in older outpatients with chronic pulmonary diseases.

PROX1 Suppresses Vitamin K-induced Transcriptional Activity of Steroid and Xenobiotic Receptor

Genes to Cells : Devoted to Molecular & Cellular Mechanisms. Nov, 2011  |  Pubmed ID: 22023334

Steroid and Xenobiotic Receptor (SXR) belongs to nuclear receptor superfamily. It was shown that secondary bile acids such as lithocholic acid and several chemical compounds such as rifampicin could be ligands for this receptor. Recently, we have demonstrated that vitamin K2 also serves as a ligand for SXR and activation of SXR by vitamin K2 suppressed proliferation and motility of hepatocellular carcinoma (HCC) cells. To analyze function of SXR in HCC cells, we overexpressed exogenous SXR double-tagged with FLAG and HA in a HCC cell line, HepG2 cells, and purified SXR-binding molecules by immunoprecipitation from the nuclear extracts of these cells. Several binding molecules were identified by TOF-MS analyses. One of the SXR-binding molecules was a transcription factor PROX1. We confirmed the interaction of PROX1 and SXR in HEK293 cells. Then, we have shown that AF2 domain of SXR is necessary for binding with PROX1. We further demonstrated that PROX1 negatively regulated the transcriptional activity of SXR by promoter analyses of SXR target gene. These results suggest that PROX1 could negatively regulate SXR signals in some tumor cells, such as HCC cells, where both SXR and PROX1 are expressed.

Gene Expression Analysis of Host Innate Immune Responses in the Central Nervous System Following Lethal CVS-11 Infection in Mice

Japanese Journal of Infectious Diseases. 2011  |  Pubmed ID: 22116324

The central nervous system (CNS) tissue of mice infected with the CVS-11 strain of rabies virus (RABV) was subjected to gene expression analysis using microarray and canonical pathway analyses. Genes associated with innate immunity as well as inflammatory responses were significantly up-regulated, corroborating with the previous findings obtained using attenuated viruses that did not induce a fatal outcome in infected mice. Histopathological examination showed that neurons in the cerebellum had undergone apoptosis. Although the extent of Fas ligand up-regulation was not so prominent, perforin and granzyme genes were highly expressed in the CNS of mice infected with CVS-11. The presence of perforin and granzymes both in the Purkinje cells and CD3 T lymphocytes strongly suggested that apoptosis of the former cells was induced by the latter cells.

[A Case of Giant Renal Angiomyolipoma Treated by Partial Nephrectomy]

Hinyokika Kiyo. Acta Urologica Japonica. Dec, 2011  |  Pubmed ID: 22240302

A 38-year-old woman visited our hospital complaining of decreased appetite and sensation of pressure on her abdomen. Computed tomographic scan revealed right giant renal angiomyolipoma. Partial nephrectomy was performed. The resected specimen weighed 970 grams. The histological diagnosis was consistent with angiomyolipoma. Partial nephrectomy was performed because the connection between the tumor and the kidney was in a small range and the tumor was detached easily from the surrounding tissue.

Terf/TRIM17 Stimulates Degradation of Kinetochore Protein ZWINT and Regulates Cell Proliferation

Journal of Biochemistry. Feb, 2012  |  Pubmed ID: 22023800

Terf/TRIM17 is a tripartite motif protein that has been originally isolated from testis. Terf has been characterized to exhibit an E3 ubiquitin ligase activity and to undergo self-ubiquitination. The cellular function of terf and its substrates, however, remain elusive. In the present study, we performed a yeast two-hybrid screening assay using terf as bait and identified a positive clone coding for ZW10 interacting protein (ZWINT), a known component of the kinetochore complex required for the mitotic spindle checkpoint. Immunoprecipitation and western blot analyses showed that terf interacted with ZWINT and that overexpression of terf caused down-regulation of protein levels of ZWINT in mammalian cells. In addition, the coiled-coil domain of terf was required for the interaction with ZWINT. In a cell growth assay, stable transfection with terf decreased proliferation of MCF7 breast cancer cells. In contrast, the growth rate of MCF7 cells was increased by stable expression of ZWINT. Specific siRNAs targeting terf and ZWINT dampened these negative and positive effects of terf and ZWINT on cell proliferation, respectively. These results suggest that the E3 ubiquitin ligase terf causes protein degradation of ZWINT and negatively regulates cell proliferation.

Clinical Significance of Steroid and Xenobiotic Receptor and Its Targeted Gene CYP3A4 in Human Prostate Cancer

Cancer Science. Feb, 2012  |  Pubmed ID: 22050110

The steroid and xenobiotic receptor (SXR) regulates cytochrome P450 (CYP) enzymes, which are key inactivators of testosterone in the liver and prostate. In the present study, we investigated SXR expression in human prostate tissues. We determined SXR immunoreactivity using an anti-SXR antibody in benign (n = 78) and cancerous (n = 106) tissues obtained by radical prostatectomy. Stained slides were evaluated for the proportion and staining intensity of immunoreactive cells. Total immunoreactivity (IR) scores (range: 0-8) were calculated as the sum of the proportion and intensity scores. Associations between the clinicopathological features of the patients, SXR status, and CYP3A4 immunoreactivity were analyzed. Western blot analyses validated the specificity of the anti-SXR antibody in 293T cells transfected with pcDNA-FLAG-SXR. Positive (IR score: ≥ 2) nuclear SXR staining was observed in 91% (71/78) of benign foci and 47% (50/106) of cancerous lesions. Immunoreactivity scores were significantly lower in the cancerous lesions than in the benign foci (P < 0.0001). Clinicopathological analyses showed that cancer-specific survival in patients with high SXR IR scores (≥4) was significantly increased (P = 0.046). Combined data of present and previous studies showed that high IR scores for both the SXR and CYP3A4 correlated with significantly better cancer-specific survival rates in multivariate regression analyses (hazard ratio: 2.15, 95% confidence interval: 1.25-3.55, P = 0.007). We showed differential SXR expression in human prostate tissues. The high expression of the SXR and CYP3A4 is a strong prognostic indicator of favorable outcomes in prostate cancer, and could be a therapeutic target. (Cancer Sci 2012; 103: 176-180).

Second Generation of Pseudotype-based Serum Neutralization Assay for Nipah Virus Antibodies: Sensitive and High-throughput Analysis Utilizing Secreted Alkaline Phosphatase

Journal of Virological Methods. Jan, 2012  |  Pubmed ID: 22115786

Nipah virus (NiV), Paramyxoviridae, Henipavirus, is classified as a biosafety level (BSL) 4 pathogen, along with the closely related Hendra virus (HeV). A novel serum neutralization test was developed for measuring NiV neutralizing antibodies under BSL2 conditions using a recombinant vesicular stomatitis virus (VSV) expressing secreted alkaline phosphatase (SEAP) and pseudotyped with NiV F/G proteins (VSV-NiV-SEAP). A unique characteristic of this novel assay is the ability to obtain neutralization titers by measuring SEAP activity in supernatant using a common ELISA plate reader. This confers a remarkable advantage over the first generation of NiV-pseudotypes expressing green fluorescent protein or luciferase, which require expensive and specific measuring equipment. Using panels of NiV- and HeV-specific sera from various species, the VSV-NiV-SEAP assay demonstrated neutralizing antibody status (positive/negative) consistent with that obtained by conventional live NiV test, and gave higher antibody titers than the latter. Additionally, when screening sixty-six fruit bat sera at one dilution, the VSV-NiV-SEAP assay produced identical results to the live NiV test and only required a very small amount (2μl) of sera. The results suggest that this novel VSV-NiV-SEAP assay is safe, useful for high-throughput screening of sera using an ELISA plate reader, and has high sensitivity and specificity.

Novel Animal Glioma Models That Separately Exhibit Two Different Invasive and Angiogenic Phenotypes of Human Glioblastomas

World Neurosurgery. Dec, 2012  |  Pubmed ID: 22120277

Invasive behaviors of malignant gliomas are fundamental traits and major reasons for treatment failure. Delineation of invasive growth is important in establishing treatment for gliomas and experimental neuro-oncology could benefit from an invasive glioma model. In this study, we established two new cell line-based animal models of invasive glioma.

A Case Report of Traumatic Neuroma of the Cervical Spinal Cord in a Dog

The Journal of Veterinary Medical Science / the Japanese Society of Veterinary Science. Jun, 2012  |  Pubmed ID: 22214863

Traumatic neuroma of the cervical spinal cord was diagnosed in a 14-year-old male mixed-breed dog. A gross view showed two intradural extramedullary masses, measuring 1 and 0.6 cm in length and 0.7 and 0.4 cm in diameter, attached to the left side of the spinal cord at the level of the sixth and seventh cervical vertebrae. Microscopically, the cervical spinal masses comprised interlacing fascicles of axons and Schwann cells surrounded by collagenous stroma. Immunohistochemically, the fascicles were stained positively for neurofilament and S-100 proteins. Ultrastructurally, variably sized myelinated fibers and onion bulb-like structures were observed. To our knowledge, this is the first report of a traumatic neuroma in the cervical spinal cord of a dog.

Serial Passage of a Street Rabies Virus in Mouse Neuroblastoma Cells Resulted in Attenuation: Potential Role of the Additional N-glycosylation of a Viral Glycoprotein in the Reduced Pathogenicity of Street Rabies Virus

Virus Research. Apr, 2012  |  Pubmed ID: 22248643

Street rabies viruses are field isolates known to be highly neurotropic. However, the viral elements related to their pathogenicity have yet to be identified at the nucleotide or amino acid level. Here, through 30 passages in mouse neuroblastoma NA cells, we have established an attenuated variant of street rabies virus strain 1088, originating from a rabid woodchuck followed by 2 passages in the brains of suckling mice. The variant, 1088-N30, was well adapted to NA cells and highly attenuated in adult mice after intramuscular (i.m.) but not intracerebral (i.c.) inoculations. 1088-N30 had seven nucleotide substitutions, and the R196S mutation of the G protein led to an additional N-glycosylation. Street viruses usually possess one or two N-glycosylation sites on the G protein, 1088 has two, while an additional N-glycosylation site is observed in laboratory-adapted strains. We also established a cloned variant 1088-N4#14 by limiting dilution. Apart from the R196S mutation, 1088-N4#14 possessed only one amino acid substitution in the P protein, which is found in several field isolates. 1088-N4#14 also efficiently replicated in NA cells and was attenuated in adult mice after i.m. inoculations, although it was more pathogenic than 1088-N30. The spread of 1088-N30 in the brain was highly restricted after i.m. inoculations, although the pattern of 1088-N4#14's spread was intermediate between that of the parental 1088 and 1088-N30. Meanwhile, both variants strongly induced humoral immune responses in mice compared to 1088. Our results indicate that the additional N-glycosylation is likely related to the reduced pathogenicity. Taken together, we propose that the number of N-glycosylation sites in the G protein is one of the determinants of the pathogenicity of street rabies viruses.

Are There Any Similarities in the Hepatic Vascular Anatomy Among Blood Relatives?

Hepato-gastroenterology. Jan-Feb, 2012  |  Pubmed ID: 22251537

The existence of similarities in the hepatic vascular anatomy among blood relatives (BR) have never been studied before. Since in living donor liver transplantation (LDLT), the donor may be a BR, an opportunity is available to assess whether there are similarities in the hepatic vascular anatomy among BR.

DNA Microarray Analysis of Transcriptional Responses of Rats Housed on Solid and Grid Cage Flooring

The Journal of Toxicological Sciences. Feb, 2012  |  Pubmed ID: 22293427

We performed DNA microarray analysis on the white blood cells (WBCs) of rats housed on solid and grid cage flooring. The expression levels of 50 genes were found to increase more than 2-fold in the WBCs on grid cage flooring, including many genes encoding proteins involved in inflammatory or immune responses. It is therefore suggested that the health and welfare of laboratory rats is likely to be improved by housing rats on solid floors.

Forkhead Box Transcription Factor, Forkhead Box A1, Shows Negative Association with Lymph Node Status in Endometrial Cancer, and Represses Cell Proliferation and Migration of Endometrial Cancer Cells

Cancer Science. Apr, 2012  |  Pubmed ID: 22313737

Endometrial cancer is the most common malignancy of the female genital tract and is associated with poor prognosis. It is primarily a hormone-dependent cancer that is regulated by steroid hormones, including estrogen and progesterone. Forkhead box A1 (FOXA1) is a member of the forkhead box transcription factor family and functions as a pioneer factor in estrogen receptor (ER)-positive breast cancer. In the present study, we investigated the expression of FOXA1 in endometrial cancers by immunohistochemical analysis. Nuclear immunoreactivity for FOXA1 was detected in 40 of 109 cases (37%), and was found to be negatively associated with lymph node status (P = 0.033). In ER-positive Ishikawa endometrial cancer cells, small interfering RNA-mediated downregulation of FOXA1 promoted cell proliferation and migration. Furthermore, exogenously introduced FOXA1 suppressed both proliferation and migration of Ishikawa cells. These results suggest that FOXA1 functions as a tumor suppressor through modulation of proliferation and migration of endometrial cancer cells.

Nontraumatic Acute Subdural Hematoma Associated with the Myelodysplastic/myeloproliferative Neoplasms

Journal of Neurosciences in Rural Practice. Jan, 2012  |  Pubmed ID: 22346213

Nanobiopolymer for Direct Targeting and Inhibition of EGFR Expression in Triple Negative Breast Cancer

PloS One. 2012  |  Pubmed ID: 22355336

Treatment options for triple negative breast cancer (TNBC) are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR) therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid) (PMLA) nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb) 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR) antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON) to inhibit EGFR synthesis. The nanobioconjugates variants were: (1) P (BioPolymer) with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR), and (2) P with AON and 2C5 (P/AON/2C5). Controls included (3) P with 2C5 but without AON (P/2C5), (4) PBS, and (5) P with PEG and leucine ester (LOEt) for endosomal escape (P/mPEG/LOEt). Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging) and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting. In vitro western blot showed that the leading nanobioconjugate P/AON/2C5/TfR inhibited EGFR synthesis significantly better than naked AON. In vivo imaging revealed that 2C5 increased drug-tumor accumulation. Significant tumor growth inhibition was observed in mice treated with the lead nanobioconjugate (1) [P = 0.03 vs. controls; P<0.05 vs. nanobioconjugate variant (2)]. Lead nanobioconjugate (1) also showed stronger inhibition of EGFR expression and Akt phosphorylation than other treatments. Treatment of TNBC with the new nanobioconjugate results in tumor growth arrest by inhibiting EGFR and its downstream signaling intermediate, phosphorylated Akt. The nanobioconjugate represents a new generation of nanodrugs for treatment of TNBC.

GPR98/Gpr98 Gene is Involved in the Regulation of Human and Mouse Bone Mineral Density

The Journal of Clinical Endocrinology and Metabolism. Apr, 2012  |  Pubmed ID: 22419726

Genetic factors are important in the development of osteoporosis.

Macrophage Migration Inhibitory Factor (MIF) Promotes Cell Survival and Proliferation of Neural Stem/progenitor Cells

Journal of Cell Science. Jul, 2012  |  Pubmed ID: 22454509

In a previous study, we showed that murine dendritic cells (DCs) can increase the number of neural stem/progenitor cells (NSPCs) in vitro and in vivo. In the present study, we identified macrophage migration inhibitory factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs in vitro. MIF is secreted by DCs and NSPCs, and its function in the normal brain remains largely unknown. It was previously shown that in macrophages, MIF binds to a CD74-CD44 complex. In the present study, we observed the expression of MIF receptors in mouse ganglionic-eminence-derived neurospheres using flow cytometry in vitro. We also found CD74 expression in the ganglionic eminence of E14 mouse brains, suggesting that MIF plays a physiological role in vivo. MIF increased the number of primary and secondary neurospheres. By contrast, retrovirally expressed MIF shRNA and MIF inhibitor (ISO-1) suppressed primary and secondary neurosphere formation, as well as cell proliferation. In the neurospheres, MIF knockdown by shRNA increased caspase 3/7 activity, and MIF increased the phosphorylation of Akt, Erk, AMPK and Stat3 (Ser727), as well as expression of Hes3 and Egfr, the products of which are known to support cell survival, proliferation and/or maintenance of NSPCs. MIF also acted as a chemoattractant for NSPCs. These results show that MIF can induce NSPC proliferation and maintenance by multiple signaling pathways acting synergistically, and it may be a potential therapeutic factor, capable of activating NSPC, for the treatment of degenerative brain disorders.

TACC2 is an Androgen-responsive Cell Cycle Regulator Promoting Androgen-mediated and Castration-resistant Growth of Prostate Cancer

Molecular Endocrinology (Baltimore, Md.). May, 2012  |  Pubmed ID: 22456197

Despite the existence of effective antiandrogen therapy for prostate cancer, the disease often progresses to castration-resistant states. Elucidation of the molecular mechanisms underlying the resistance for androgen deprivation in terms of the androgen receptor (AR)-regulated pathways is a requisite to manage castration-resistant prostate cancer (CRPC). Using a ChIP-cloning strategy, we identified functional AR binding sites (ARBS) in the genome of prostate cancer cells. We discovered that a centrosome- and microtubule-interacting gene, transforming acidic coiled-coil protein 2 (TACC2), is a novel androgen-regulated gene. We identified a functional AR-binding site (ARBS) including two canonical androgen response elements in the vicinity of TACC2 gene, in which activated hallmarks of histone modification were observed. Androgen-dependent TACC2 induction is regulated by AR, as confirmed by AR knockdown or its pharmacological inhibitor bicalutamide. Using long-term androgen-deprived cells as cellular models of CRPC, we demonstrated that TACC2 is highly expressed and contributes to hormone-refractory proliferation, as small interfering RNA-mediated knockdown of TACC2 reduced cell growth and cell cycle progression. By contrast, in TACC2-overexpressing cells, an acceleration of the cell cycle was observed. In vivo tumor formation study of prostate cancer in castrated immunocompromised mice revealed that TACC2 is a tumor-promoting factor. Notably, the clinical significance of TACC2 was demonstrated by a correlation between high TACC2 expression and poor survival rates. Taken together with the critical roles of TACC2 in the cell cycle and the biology of prostate cancer, we infer that the molecule is a potential therapeutic target in CRPC as well as hormone-sensitive prostate cancer.

Association of Double-positive FOXA1 and FOXP1 Immunoreactivities with Favorable Prognosis of Tamoxifen-treated Breast Cancer Patients

Hormones & Cancer. Aug, 2012  |  Pubmed ID: 22476979

Breast cancer is primarily a hormone-dependent tumor that can be regulated by the status of the steroid hormones estrogen and progesterone. Forkhead box A1 (FOXA1) is a member of the forkhead box transcription factor family and functions as a pioneer factor of the estrogen receptor (ER) in breast cancer. In the present study, we demonstrate that FOXA1 mRNA was upregulated by estrogen and that estrogen receptor-α (ERα) recruitment to ER-binding sites in the vicinity of the FOXA1 gene was increased by estrogen in ERα-positive MCF-7 breast cancer cells. The estrogen-induced FOXA1 upregulation was repressed by 4-hydroxytamoxifen treatment. We also demonstrated that the proliferation and the migration of MCF-7 cells were decreased by FOXA1-specific small interfering RNA (siRNA; siFOXA1). Furthermore, siFOXA1 decreased the estrogen response element-driven transcription and the estrogen-dependent upregulation of ERα target genes in MCF-7 cells. Next, the immunohistochemical analyses of FOXA1 were performed using two groups of breast cancer specimens. The nuclear immunoreactivity of FOXA1 was detected in 80 (74%) of 108 human invasive breast cancers and was negatively correlated with tumor grade and positively correlated with hormone receptor status, including ERα and progesterone receptor, pathological tumor size, and immunoreactivity of FOXP1, another FOX family transcription factor. FOXA1 immunoreactivity was significantly elevated in the relapse-free breast cancer patients treated with tamoxifen. Notably, the double-positive immunoreactivities of FOXA1 and FOXP1 were significantly associated with a favorable prognosis for the relapse-free and overall survival of patients with tamoxifen-treated breast cancer, with lower P values compared with FOXA1 or FOXP1 immunoreactivity alone. These results suggest that FOXA1 plays an important role in the proliferation and migration of breast cancer cells by modulating estrogen signaling and that the double-positive immunoreactivities of FOXA1 and FOXP1 are associated with a favorable prognosis of tamoxifen-treated breast cancer.

TRADD Contributes to Tumour Suppression by Regulating ULF-dependent P19Arf Ubiquitylation

Nature Cell Biology. Jun, 2012  |  Pubmed ID: 22561347

Tumour necrosis factor receptor (TNFR)-associated death domain (TRADD) protein is a central adaptor in the TNFR1 signalling complex that mediates both cell death and inflammatory signals. Here, we report that Tradd deficiency in mice accelerated tumour formation in a chemical-induced carcinogenesis model independently of TNFR1 signalling. In vitro, primary cells lacking TRADD were less susceptible to HRas-induced senescence and showed a reduced level of accumulation of the p19(Arf) tumour suppressor protein. Our data indicate that TRADD shuttles dynamically from the cytoplasm into the nucleus to modulate the interaction between p19(Arf) and its E3 ubiquitin ligase ULF, thereby promoting p19(Arf) protein stability and tumour suppression. These results reveal a previously unknown tumour-suppressive role for nuclear TRADD, augmenting its long-established cytoplasmic functions in inflammatory and immune signalling cascades. Our findings also make an important contribution to the rapidly expanding field of p19(Arf) post-translational regulation.

Antigen Capture ELISA System for Henipaviruses Using Polyclonal Antibodies Obtained by DNA Immunization

Archives of Virology. Aug, 2012  |  Pubmed ID: 22585045

A novel antigen-capture sandwich ELISA system targeting the glycoproteins of the henipaviruses Nipah virus (NiV) and Hendra virus (HeV) was developed. Utilizing purified polyclonal antibodies derived from NiV glycoprotein-encoding DNA-immunized rabbits, we established a system that can detect the native antigenic structures of the henipavirus surface glycoproteins using simplified and inexpensive methods. The lowest detection limit against live viruses was achieved for NiV Bangladesh strain, 2.5 × 10(4) TCID(50). Considering the recent emergence of genetic variants of henipaviruses and the resultant problems that arise for PCR-based detection, this system could serve as an alternative rapid diagnostic and detection assay.

Association of Circulating Sclerostin Levels with Fat Mass and Metabolic Disease--related Markers in Japanese Postmenopausal Women

The Journal of Clinical Endocrinology and Metabolism. Aug, 2012  |  Pubmed ID: 22639287

Wnt/β-catenin signaling is related to the pathogenesis of osteoporosis, diabetes, and metabolic diseases. Sclerostin is an inhibitor of Wnt/β-catenin signaling. However, there are few data regarding the relationship between sclerostin levels and metabolic disease.

Effect of Parenteral Hydration Therapy Based on the Japanese National Clinical Guideline on Quality of Life, Discomfort, and Symptom Intensity in Patients with Advanced Cancer

Journal of Pain and Symptom Management. Jun, 2012  |  Pubmed ID: 22651946

Although an evidence-based clinical guideline for parenteral hydration therapy was established in Japan, the efficacy of the guideline has not been assessed.

Comparison of RFFIT Tests with Different Standard Sera and Testing Procedures

Virologica Sinica. Jun, 2012  |  Pubmed ID: 22684473

The World Health Organization (WHO) standard assay for determining antibody level is the rapid fluorescent focus inhibition test (RFFIT) and is used to determine the degree of immunity after vaccination against rabies. To compare the difference in RFFIT results between the laboratories of The National Institute of Infectious Disease in Japan (NIID) and the Chinese Centre for Disease Control (CCDC) as well the influence of the choice of standard serum (STD) for the detection, the two laboratories detection methods were simultaneously manipulated by RFFIT. The reference serums used in NIID and the WHO standard serum used in CCDC were compared in the same RFFIT detection to determine the titer of four sera samples C1, S1, S2 and S4 in parallel, and the titers of the detected sera samples were calculated using the standard formula for neutralizing antibody titer. No significant difference was found in RFFIT methods from the two laboratories and the RFFIT testing procedures of the two laboratories have good consistency. However, different titers were obtained with the tentative internal standard serum (TI-STD) produced by adjusting to 2.0 IU of WHO standard serum in NIID and the WHO STD. The titer determined with the TI-STD was higher than that determined with WHO STD, This difference appears to be significant and requires further investigation.

Implications of the Golgi Apparatus in Prostate Cancer

The International Journal of Biochemistry & Cell Biology. Nov, 2012  |  Pubmed ID: 22721754

The classical view of the Golgi apparatus is of a small membranous organelle involved in protein transport and secretion. Recent descriptions of the molecular network connecting the Golgi to other organelles demonstrate the essential roles of the Golgi in cellular activities as a stress sensor, apoptosis trigger, lipid/protein modifier, mitotic checkpoint, and a mediator of malignant transformation. Thus, the Golgi function should have a fundamental impact on cancer cell survival. Prostate cancer is initially responsive to androgenic hormones; however, it almost invariably progresses to a castration-refractory or hormone-insensitive state. Nevertheless, androgen signaling remains active at this stage and is important as a therapeutic target. Certain Golgi-associated molecules have recently been demonstrated to be regulated by androgen action, and the Golgi is emerging as a new therapeutic target in prostate cancer. The key Golgi-associated molecules essential for prostate cancer development and the potential therapeutic options targeting the Golgi apparatus are discussed.

Conditional Expression of Human Bone Gla Protein in Osteoblasts Causes Skeletal Abnormality in Mice

Biochemical and Biophysical Research Communications. Jul, 2012  |  Pubmed ID: 22735266

Bone Gla protein (BGP), also known as osteocalcin, is one of the most abundant γ-carboxylated noncollagenous protein in bone matrix and plays important roles in mineralization and calcium ion homeostasis. BGP is synthesized specifically in osteoblasts; however, its precise function in bone metabolism has not been fully elucidated. To investigate the in vivo function of human BGP (hBGP), we generated CAG-GFP(floxed)-hBGP transgenic mice carrying a transgene cassette composed of the promoter and a floxed GFP linked to hBGP cDNA. The mice were crossed with ColI-Cre mice, which express the Cre recombinase driven by the mouse collagen type 1a1 gene promoter, to obtain hBGP(ColI) conditional transgenic mice that expressed human BGP in osteoblasts. The hBGP(ColI) mice did not survive more than 2days after birth. The analysis of the 18.5-day post coitum fetuses of the hBGP(ColI) mice revealed that they displayed abnormal skeletal growth such as deformity of the rib and short femur and cranium lengths. Moreover, increased BGP levels were detected in the serum of the neonates. These findings indicate that hBGP expression in osteoblasts resulted in the abnormal skeletal growth in the mice. Our study provides a valuable model for understanding the fundamental role of BGP in vivo.

Supratentorial Pure Cortical Ependymoma

Journal of Clinical Neuroscience : Official Journal of the Neurosurgical Society of Australasia. Oct, 2012  |  Pubmed ID: 22898199

Ependymoma usually occurs in the lateral or the fourth ventricle. Supratentorial extraventricular ependymoma is relatively rare. However, extraventricular ependymoma located at the cerebral cortex is extremely rare. We treated a 20-year-old woman who presented with generalized seizures. Cranial CT scan revealed a calcified mass in the left precentral gyrus. MRI confirmed an extraventricular, 12-mm-diameter intracortical mass. After gadolinium injection, tumor enhancement was mild and heterogeneous. The tumor was totally resected without neurological deterioration. Histological features were consistent with ependymoma, forming perivascular pseudorosettes without anaplastic figures. Immunohistochemistry showed positive staining for glial fibrillary acidic protein, S-100, and epithelial membrane antigen. A diagnosis of ependymoma of World Health Organization grade II was made. The patient has not had a seizure since the operation. There has been no clinical or radiologic evidence of recurrence during a 16-month postoperative follow-up.

Conditional Expression of Constitutively Active Estrogen Receptor α in Chondrocytes Impairs Longitudinal Bone Growth in Mice

Biochemical and Biophysical Research Communications. Sep, 2012  |  Pubmed ID: 22902633

Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα(ColII), expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα(ColII) mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα(ColII) mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα(ColII) mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

14-3-3ζ, a Novel Androgen-responsive Gene, is Upregulated in Prostate Cancer and Promotes Prostate Cancer Cell Proliferation and Survival

Clinical Cancer Research : an Official Journal of the American Association for Cancer Research. Oct, 2012  |  Pubmed ID: 22904106

Androgen receptor is an essential transcriptional factor that contributes to the development and progression of prostate cancer. In this study, we investigated the androgen regulation and functional analysis of 14-3-3ζ in prostate cancer.

D-2-hydroxyglutarate Produced by Mutant IDH1 Perturbs Collagen Maturation and Basement Membrane Function

Genes & Development. Sep, 2012  |  Pubmed ID: 22925884

Isocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knock-in (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality. Surprisingly, intracellular reactive oxygen species (ROS) are attenuated in Idh1-KI brain cells despite an apparent increase in the NADP(+)/NADPH ratio. Idh1-KI cells also show high levels of D-2-hydroxyglutarate (D2HG) that are associated with inhibited prolyl-hydroxylation of hypoxia-inducible transcription factor-1α (Hif1α) and up-regulated Hif1α target gene transcription. Intriguingly, D2HG also blocks prolyl-hydroxylation of collagen, causing a defect in collagen protein maturation. An endoplasmic reticulum (ER) stress response induced by the accumulation of immature collagens may account for the embryonic lethality of these mutants. Importantly, D2HG-mediated impairment of collagen maturation also led to basement membrane (BM) aberrations that could play a part in glioma progression. Our study presents strong in vivo evidence that the D2HG produced by the mutant Idh1 enzyme is responsible for the above effects.

Krüppel-like Factor 5 in Human Breast Carcinoma: a Potent Prognostic Factor Induced by Androgens

Endocrine-related Cancer. Dec, 2012  |  Pubmed ID: 22936544

Krüppel-like factor 5 (intestinal) or Krüppel-like factor 5 (KLF5) is a zinc finger-containing transcription factor and involved in important biological processes including cell proliferation and differentiation. However, clinical significance of KLF5 protein has remained largely unknown in breast cancer. Therefore, in this study, we immunolocalized KLF5 in 113 human breast carcinoma cases. KLF5 immunoreactivity was frequently detected in the nuclei of breast carcinoma cells, and median value of the ratio of KLF5-positive carcinoma cells was 30% and was positively associated with the status of androgen receptor. KLF5 immunoreactivity was also significantly associated with increased risk of recurrence and worse clinical outcome in breast cancer patients by univariate analyses, and subsequent multivariate analyses demonstrated that KLF5 immunoreactivity was an independent prognostic factor for both disease-free and breast cancer-specific survival of the patients. We then examined possible regulation of KLF5 by androgen using MCF-7 breast carcinoma cells. KLF5 mRNA was induced by biologically active androgen 5α-dihydrotestosterone in a dose- and time-dependent manner in MCF-7 cells. In addition, results of transfection experiments demonstrated that proliferation activity of MCF-7 cells was significantly associated with the KLF5 expression level. These findings suggest that KLF5 is an androgen-responsive gene in human breast carcinomas and play important roles in the progression of breast carcinomas. KLF5 immunoreactivity is therefore considered a potent prognostic factor in human breast cancers.

Altered Specificity of Single-chain Antibody Fragments Bound to Pandemic H1N1-2009 Influenza Virus After Conversion of the Phage-bound to the Soluble Form

BMC Research Notes. 2012  |  Pubmed ID: 22943792

In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009-2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs).

The Progesterone-responsive Gene 14-3-3τ Enhances the Transcriptional Activity of Progesterone Receptor in Uterine Cells

Journal of Molecular Endocrinology. Dec, 2012  |  Pubmed ID: 22967481

Members of the 14-3-3 family are intracellular dimeric phosphoserine-binding proteins that can associate with and modulate the activities of many proteins. In our efforts to isolate the genes regulated by progesterone (P(4)) using suppressive subtractive hybridization, we previously found that 14-3-3τ is one of the genes upregulated by P(4). In this study, we demonstrated by quantitative RT-PCR (qRT-PCR), western blot analyses, and immunohistochemistry that 14-3-3τ mRNA and protein levels were increased in the rat uterus after P(4) treatment. Furthermore, qRT-PCR indicated that P(4) increased 14-3-3τ mRNA levels in human endometrial epithelial cells and endometrial stromal cells (ESCs). Western blot and qRT-PCR analyses revealed that in vitro decidualization using cAMP and medroxyprogesterone 17-acetate increased levels of 14-3-3τ mRNA and protein in ESCs. We have shown by qRT-PCR and western blot analyses that P(4) increased the mRNA and protein levels of 14-3-3τ in Ishikawa cells that stably express P(4) receptor-B (PR-B). Immunocytochemistry revealed that 14-3-3τ colocalizes with PR and translocates from the cytoplasm to the nucleus in response to P(4). Moreover, by luciferase reporter assay, we demonstrated that 14-3-3τ enhances the transcriptional activity of PR-B. Taken together, we propose that 14-3-3τ is a P(4)-responsive gene in uterine cells that modulates P(4) signaling.

TAp73 Depletion Accelerates Aging Through Metabolic Dysregulation

Genes & Development. Sep, 2012  |  Pubmed ID: 22987635

Aging is associated with impaired scavenging of reactive oxygen species (ROS). Here, we show that TAp73, a p53 family member, protects against aging by regulating mitochondrial activity and preventing ROS accumulation. TAp73-null mice show more pronounced aging with increased oxidative damage and senescence. TAp73 deletion reduces cellular ATP levels, oxygen consumption, and mitochondrial complex IV activity, with increased ROS production and oxidative stress sensitivity. We show that the mitochondrial complex IV subunit cytochrome C oxidase subunit 4 (Cox4i1) is a direct TAp73 target and that Cox4i1 knockdown phenocopies the cellular senescence of TAp73-null cells. Results indicate that TAp73 affects mitochondrial respiration and ROS homeostasis, thus regulating aging.

Cellular Delivery of Doxorubicin Via PH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid)

International Journal of Molecular Sciences. 2012  |  Pubmed ID: 23109877

Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(β-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.

Serum Heme Oxygenase-1 As a Marker of Lung Function Decline in Patients with Chronic Silicosis

Journal of Occupational and Environmental Medicine / American College of Occupational and Environmental Medicine. Dec, 2012  |  Pubmed ID: 23114386

To identify predictive factors of excess decline in forced expiratory volume in one second (FEV1) in patients with chronic silicosis.

[Cancer Therapy Targeting Sex Hormone Receptors]

Nihon Rinsho. Japanese Journal of Clinical Medicine. Nov, 2012  |  Pubmed ID: 23513819

TRIM Proteins As RING Finger E3 Ubiquitin Ligases

Advances in Experimental Medicine and Biology. 2012  |  Pubmed ID: 23630998

The tripartite motif(TRIM) proteins harboring the RING finger, B-box and coiled-coil (RBCC) domain motifs form a large protein family. The members of this family are involved in various biological processes, including growth, differentiation, apoptosis and transcription and also in diseases and oncogenesis. Recent studies have revealed that TRIM proteins play key roles in innate antiviral immunity. An accumulating body of evidence has demonstrated that some TRIM proteins function as E3 ubiquitin ligases in specific ubiquitin-mediated protein degradation pathways; however, the precise mechanisms underlying this function have not been fully elucidated. In this chapter, we focus on the TRIM family of proteins specially with regard to E3 ligase.

Infratentorial Low-grade Oligoastrocytoma with Aggressive Clinical Behavior in an Adult: a Case Report with Genetic Characterization

Brain Tumor Pathology. Apr, 2013  |  Pubmed ID: 22752622

Oligoastrocytoma preferentially arises in the cerebral hemisphere, and a cerebellar location is unusual. We report the case of a 35-year-old woman with an aggressive cerebellar tumor histopathologically diagnosed as oligoastrocytoma World Health Organization (WHO) grade II. After partial removal of the tumor, she underwent concomitant temozolomide (TMZ) therapy with local irradiation followed by additional TMZ monotherapy. However, her symptoms gradually worsened, and chronological magnetic resonance imaging showed remarkable tumor enlargement. In accordance with the aggressive clinical course, unfavorable genetic characteristics such as the gain of the entire chromosome 7, loss of 9p, absence of 1p/19q codeletion, absence of methylation of the O6-methylguanine-deoxyribonucleic acid methyltransferase promoter, and absence of the isocitrate dehydrogenase-1 mutation were observed. The present case illustrates that these molecular characteristics represent the biological features of gliomas more closely than the histopathological diagnosis and may also suggest that infratentorial gliomas arise through a distinct tumorigenic pathway from their supratentorial counterparts.

Bimodal Anti-glioma Mechanisms of Cilengitide Demonstrated by Novel Invasive Glioma Models

Neuropathology : Official Journal of the Japanese Society of Neuropathology. Apr, 2013  |  Pubmed ID: 22989076

Integrins are expressed in tumor cells and tumor endothelial cells, and likely play important roles in glioma angiogenesis and invasion. We investigated the anti-glioma mechanisms of cilengitide (EMD121974), an αvβ3 integrin inhibitor, utilizing the novel invasive glioma models, J3T-1 and J3T-2. Immunohistochemical staining of cells in culture and brain tumors in rats revealed positive αvβ3 integrin expression in J3T-2 cells and tumor endothelial cells, but not in J3T-1 cells. Established J3T-1 and J3T-2 orthotopic gliomas in athymic rats were treated with cilengitide or solvent. J3T-1 gliomas showed perivascular tumor cluster formation and angiogenesis, while J3T-2 gliomas showed diffuse single-cell infiltration without obvious angiogenesis. Cilengitide treatment resulted in a significantly decreased diameter of the J3T-1 tumor vessel clusters and its core vessels when compared with controls, while an anti-invasive effect was shown in the J3T-2 glioma with a significant reduction of diffuse cell infiltration around the tumor center. The survival of cilengitide-treated mice harboring J3T-1 tumors was significantly longer than that of control animals (median survival: 57.5 days and 31.8 days, respectively, P < 0.005), while cilengitide had no effect on the survival of mice with J3T-2 tumors (median survival: 48.9 days and 48.5, P = 0.69). Our results indicate that cilengitide exerts a phenotypic anti-tumor effect by inhibiting angiogenesis and glioma cell invasion. These two mechanisms are clearly shown by the experimental treatment of two different animal invasive glioma models.

Proteomics-based Analysis of Invasion-related Proteins in Malignant Gliomas

Neuropathology : Official Journal of the Japanese Society of Neuropathology. Jun, 2013  |  Pubmed ID: 23116197

One of the insidious biological features of gliomas is their potential to extensively invade normal brain tissue, yet molecular mechanisms that dictate this locally invasive behavior remain poorly understood. To investigate the molecular basis of invasion by malignant gliomas, proteomic analysis was performed using a pair of canine glioma subclones - J3T-1 and J3T-2 - that show different invasion phenotypes in rat brains but have similar genetic backgrounds. Two-dimensional protein electrophoresis of whole-cell lysates of J3T-1 (angiogenesis-dependent invasion phenotype) and J3T-2 (angiogenesis-independent invasion phenotype) was performed. Twenty-two distinct spots were recognized when significant alteration was defined as more than 1.5-fold change in spot intensity between J3T-1 and J3T-2. Four proteins that demonstrated increased expression in J3T-1, and 14 proteins that demonstrated increased expression in J3T-2 were identified using liquid chromatography-mass spectrometry analysis. One of the proteins identified was annexin A2, which was expressed at higher levels in J3T-1 than in J3T-2. The higher expression of annexin A2 in J3T-1 was corroborated by quantitative RT-PCR of the cultured cells and immunohistochemical staining of the rat brain tumors. Moreover, immunohistochemical analysis of human glioblastoma specimens showed that annexin A2 was expressed at high levels in the tumor cells that formed clusters around dilated vessels. These results reveal differences in the proteomic profiles between these two cell lines that might correlate with their different invasion profiles. Thus, annexin A2 may be related to angiogenesis-dependent invasion.

Expression and Regulation of Transient Receptor Potential Cation Channel, Subfamily M, Member 2 (TRPM2) in Human Endometrium

Molecular and Cellular Endocrinology. Jan, 2013  |  Pubmed ID: 23142700

To identify estrogen-responsive genes, we previously isolated estrogen receptor (ER)-binding DNA fragments from human genomic DNA using a recombinant ER protein. Six DNA fragments, each including a perfect palindromic estrogen response element (ERE), were obtained. The nucleotide sequence of one of the six fragments (E1 fragment) showed that the ERE of the E1 fragment is located in the 3'-untranslated region (UTR) of transient receptor potential cation channel, subfamily M, member 2 (TRPM2). Here, we confirmed the estrogen-dependent enhancer activity of the ERE of the E1 fragment by chloramphenicol acetyltransferase assay. TRPM2 mRNA expression was investigated in human endometrium, cultured human endometrial stromal cells (ESCs), and cultured human endometrial epithelial cells (EECs) using RT-PCR. Quantitative RT-PCR revealed that TRPM2 mRNA expression in ESCs increased after 17β-estradiol (E2) treatment. This study demonstrated for the first time that TRPM2 is an estrogen-responsive gene expressed in human endometrial cells.

Genome-wide Integrated Analyses of Androgen Receptor Signaling in Prostate Cancer Based on High-throughput Technology

Current Drug Targets. Apr, 2013  |  Pubmed ID: 23410126

The androgen receptor (AR) is a steroid hormone receptor that functions as a ligand-dependent transcriptional factor, which plays a key role in the development and progression of prostate cancer. Recent advancement in high throughput technologies including microarrays and deep-sequencing provides unbiased genome-wide knowledge on the AR signaling including datasets for androgen-regulated gene expression and genomic binding sites for AR. In the present review, we will briefly summarize the main features of the AR signaling as well as the individual AR target genes identified by the integration of multiple datasets in prostate cancer. Cap analysis gene expression (CAGE) is also featured as a unique transcriptome method, which particularly determines the androgen-dependent transcription start points in prostate cancer.

Cyclic Stretch Augments Production of Neutrophil Chemokines and Matrix Metalloproteinases-1 (MMP-1) from Human Decidual Cells, and the Production Was Reduced by Progesterone

American Journal of Reproductive Immunology (New York, N.Y. : 1989). May, 2013  |  Pubmed ID: 23418737

The purpose of this study was to evaluate the impact of mechanical stretch caused by uterine contraction and progesterone (P₄) on decidual cells (DC), neutrophil chemokines, and MMP-1 expression.

Intravenous Thrombolysis with Neuroprotective Therapy by Edaravone for Ischemic Stroke Patients Older Than 80 Years of Age

Journal of Stroke and Cerebrovascular Diseases : the Official Journal of National Stroke Association. Oct, 2013  |  Pubmed ID: 23507462

Alteplase, a recombinant tissue plasminogen activator (tPA), was approved for patients with acute ischemic stroke within 3 hours of stroke onset in Japan in October 2005 at a dose of 0.6 mg/kg. The aim of this study was to assess the safety and efficacy of alteplase in elderly patients in Japan.

RNA Sequencing of MCF-7 Breast Cancer Cells Identifies Novel Estrogen-responsive Genes with Functional Estrogen Receptor-binding Sites in the Vicinity of Their Transcription Start Sites

Hormones & Cancer. Aug, 2013  |  Pubmed ID: 23526455

Estrogen receptor α (ERα) is a key transcription factor in breast cancer, which plays an essential role in the pathophysiology of the disease by regulating the expression of various target genes. In the present study, we performed deep RNA sequencing (RNA-seq) as an unbiased high-throughput technique for comprehensive transcriptome analysis in ERα-positive human breast cancer MCF-7 cells, to facilitate the elucidation of ERα regulatory gene networks. From the 17,336 mapped RefSeq genes from the sequenced fragments of the cell samples treated with estrogen time dependently, substantial numbers of sequence reads were observed in 3,386 genes (>100 tags per million reads per sample at any of the six time points studied). ERα occupancy within and in the proximal regions of the genes (<10-kb upstream and downstream regions) was significantly enriched in the subgroup of the 3,386 genes compared to the whole 17,336 RefSeq genes. Of the 3,386 genes, we focused on 29 genes, which included ERα occupancy adjacent to their transcription start sites and whose expression was estrogen dependently altered by >3-fold. Knockdown studies using siRNAs specific to the 29 genes validated that prototypic ERα targets V-myc myelocytomatosis viral oncogene homolog and cyclin D1 promote both proliferation and migration of MCF-7 cells and further identified novel candidate ERα targets EIF3A and tumor protein D52-like 1, which will also facilitate the proliferation or migration of MCF-7 cells. Taken together, the present findings provide a valuable dataset that will elucidate ERα regulatory mechanisms in breast cancer biology, based on the integrative analysis of RNA-seq combined with the genome-wide information for ERα occupancy.

Studies on Therapeutic Effects and Pathological Features of an Antithrombin Preparation in Septic Disseminated Intravascular Coagulation Patients

Yonsei Medical Journal. May, 2013  |  Pubmed ID: 23549815

Few reports have been made on the therapeutic effects as well as pathological features of an antithrombin preparation in patients diagnosed with septic disseminated intravascular coagulation (DIC) by the diagnostic criteria for acute DIC.

Genetic Diversity and Geographic Distribution of Genetically Distinct Rabies Viruses in the Philippines

PLoS Neglected Tropical Diseases. 2013  |  Pubmed ID: 23593515

Rabies continues to be a major public health problem in the Philippines, where 200-300 human cases were reported annually between 2001 and 2011. Understanding the phylogeography of rabies viruses is important for establishing a more effective and feasible control strategy.

Transcriptional Network of Androgen Receptor in Prostate Cancer Progression

International Journal of Urology : Official Journal of the Japanese Urological Association. Aug, 2013  |  Pubmed ID: 23600948

The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

Androgen-responsive Long Noncoding RNA CTBP1-AS Promotes Prostate Cancer

The EMBO Journal. Jun, 2013  |  Pubmed ID: 23644382

High-throughput techniques have identified numerous antisense (AS) transcripts and long non-coding RNAs (ncRNAs). However, their significance in cancer biology remains largely unknown. Here, we report an androgen-responsive long ncRNA, CTBP1-AS, located in the AS region of C-terminal binding protein 1 (CTBP1), which is a corepressor for androgen receptor. CTBP1-AS is predominantly localized in the nucleus and its expression is generally upregulated in prostate cancer. CTBP1-AS promotes both hormone-dependent and castration-resistant tumour growth. Mechanistically, CTBP1-AS directly represses CTBP1 expression by recruiting the RNA-binding transcriptional repressor PSF together with histone deacetylases. CTBP1-AS also exhibits global androgen-dependent functions by inhibiting tumour-suppressor genes via the PSF-dependent mechanism thus promoting cell cycle progression. Our findings provide new insights into the functions of ncRNAs that directly contribute to prostate cancer progression.

Clinical Significance of Amyloid Precursor Protein in Patients with Testicular Germ Cell Tumor

Advances in Urology. 2013  |  Pubmed ID: 23662100

Introduction. The biological role of amyloid precursor protein (APP) is not well understood, especially in testicular germ cell tumors (TGCTs). Therefore, we aimed to investigate the immunoreactivity (IR) and expression of APP in TGCTs and evaluated its clinical relevance. Materials and Methods. We performed an analysis of immunohistochemistry and mRNA expression of APP in 64 testicular specimens and 21 snap-frozen samples obtained from 1985 to 2004. We then evaluated the association between APP expression and clinicopathological status in TGCTs. Results. Positive APP IR was observed in 9.8% (4/41) of seminomatous germ cell tumors (SGCTs) and 39.1% (9/23) of nonseminomatous germ cell tumors (NGCTs). NGCTs showed significantly more cases of positive IR (P = 0.00870) and a higher mRNA expression level compared with those of SGCTs (P = 0.0140). Positive APP IR was also significantly associated with α -fetoprotein ( α FP) elevation (P = 0.00870) and venous invasion (P = 0.0414). Conclusion. We observed an elevated APP expression in TGCTs, especially in NGCTs. APP may be associated with a more aggressive cancer in TGCTs.

Gene Expression Changes in Rat Brain After Short and Long Exposures to Particulate Matter in Los Angeles Basin Air: Comparison with Human Brain Tumors

Experimental and Toxicologic Pathology : Official Journal of the Gesellschaft Für Toxikologische Pathologie. Nov, 2013  |  Pubmed ID: 23688656

Air pollution negatively impacts pulmonary, cardiovascular, and central nervous systems. Although its influence on brain cancer is unclear, toxic pollutants can cause blood-brain barrier disruption, enabling them to reach the brain and cause alterations leading to tumor development. By gene microarray analysis validated by quantitative RT-PCR and immunostaining we examined whether rat (n=104) inhalation exposure to air pollution particulate matter (PM) resulted in brain molecular changes similar to those associated with human brain tumors. Global brain gene expression was analyzed after exposure to PM (coarse, 2.5-10μm; fine, <2.5μm; or ultrafine, <0.15μm) and purified air for different times, short (0.5, 1, and 3 months) and chronic (10 months), for 5h per day, four days per week. Expression of select gene products was also studied in human brain (n=7) and in tumors (n=83). Arc/Arg3.1 and Rac1 genes, and their protein products were selected for further examination. Arc was elevated upon two-week to three-month exposure to coarse PM and declined after 10-month exposure. Rac1 was significantly elevated upon 10-month coarse PM exposure. On human brain tumor sections, Arc was expressed in benign meningiomas and low-grade gliomas but was much lower in high-grade tumors. Conversely, Rac1 was elevated in high-grade vs. low-grade gliomas. Arc is thus associated with early brain changes and low-grade tumors, whereas Rac1 is associated with long-term PM exposure and highly aggressive tumors. In summary, exposure to air PM leads to distinct changes in rodent brain gene expression similar to those observed in human brain tumors.

Mule/Huwe1/Arf-BP1 Suppresses Ras-driven Tumorigenesis by Preventing C-Myc/Miz1-mediated Down-regulation of P21 and P15

Genes & Development. May, 2013  |  Pubmed ID: 23699408

Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.

Polymalic Acid Nanobioconjugate for Simultaneous Immunostimulation and Inhibition of Tumor Growth in HER2/neu-positive Breast Cancer

Journal of Controlled Release : Official Journal of the Controlled Release Society. Nov, 2013  |  Pubmed ID: 23770212

Breast cancer remains the second leading cause of cancer death among women in the United States. Breast cancer prognosis is particularly poor in case of tumors overexpressing the oncoprotein HER2/neu. A new nanobioconjugate of the Polycefin(TM) family of anti-cancer drugs based on biodegradable and non-toxic polymalic acid (PMLA) was engineered for a multi-pronged attack on HER2/neu-positive breast cancer cells. An antibody-cytokine fusion protein consisting of the immunostimulatory cytokine interleukin-2 (IL-2) genetically fused to an antibody specific for human HER2/neu [anti-HER2/neu IgG3-(IL-2)] was covalently attached to the PMLA backbone to target HER2/neu expressing tumors and ensure the delivery of IL-2 to the tumor microenvironment. Antisense oligonucleotides (AON) were conjugated to the nanodrug to inhibit the expression of vascular tumor protein laminin-411 in order to block tumor angiogenesis. It is shown that the nanobioconjugate was capable of specifically binding human HER2/neu and retained the biological activity of IL-2. We also showed the uptake of the nanobioconjugate into HER2/neu-positive breast cancer cells and enhanced tumor targeting in vivo. The nanobioconjugate exhibited marked anti-tumor activity manifested by significantly longer animal survival and significantly increased anti-HER2/neu immune response in immunocompetent mice bearing D2F2/E2 murine mammary tumors that express human HER2/neu. The combination of laminin-411 AON and antibody-cytokine fusion protein on a single polymeric platform results in a new nanobioconjugate that can act against cancer cells through inhibition of tumor growth and angiogenesis and the orchestration of an immune response against the tumor. The present Polycefin(TM) variant may be a promising agent for treating HER2/neu expressing tumors and demonstrates the versatility of the Polycefin(TM) nanobioconjugate platform.

FOXP1 and Estrogen Signaling in Breast Cancer

Vitamins and Hormones. 2013  |  Pubmed ID: 23810008

Breast cancers are considered to be primarily regulated by estrogen signaling pathways because estrogen-dependent proliferation is observed in the majority of breast cancer cases. Thus, hormone therapy using antiestrogen drugs such as tamoxifen is effective for breast cancers expressing estrogen receptor α (ERα). However, acquired resistance during the endocrine therapy is a critical unresolved problem in breast cancer. Recently, a forkhead transcription factor FOXA1 has been reported to play an important role in the regulation of ERα-mediated transcription and proliferation of breast cancer. Interestingly, immunohistochemical analysis of breast cancer specimens has revealed that nuclear immunoreactivities of FOXP1 as well as those of FOXA1 are positively correlated with hormone receptor status, including ERα and progesterone receptor. In particular, the double-positive immunoreactivities of FOXP1 and FOXA1 are significantly associated with a favorable prognosis for survival of breast cancer patients receiving adjuvant tamoxifen therapy. The functions of FOXP1 and FOXA1 have been characterized in cultured cells; further, similar to FOXA1, FOXP1 is assumed to be a critical transcription factor for ERα signaling, and both forkhead transcription factors can serve as predictive factors for acquired endocrine resistance in breast cancer.

A Stabilizing Factor for Mitochondrial Respiratory Supercomplex Assembly Regulates Energy Metabolism in Muscle

Nature Communications. 2013  |  Pubmed ID: 23857330

The mitochondrial respiratory chain is essential for oxidative phosphorylation and comprises multiple complexes, including cytochrome c oxidase, assembled in macromolecular supercomplexes. Little is known about factors that contribute to supercomplex organization. Here we identify COX7RP as a factor that promotes supercomplex assembly. Cox7rp-knockout mice exhibit decreased muscular activity and heat production failure in the cold due to reduced COX activity. In contrast, COX7RP-transgenic mice exhibit increased exercise performance with increased cytochrome c oxidase activity. Two-dimensional blue native electrophoresis reveals that COX7RP is a key molecule that promotes assembly of the III2/IVn supercomplex with complex I. Our study identified COX7RP as a protein that functions in I/III2/IVn supercomplex assembly and is required for full activity of mitochondrial respiration.

BRCA1 Interacts with Nrf2 to Regulate Antioxidant Signaling and Cell Survival

The Journal of Experimental Medicine. Jul, 2013  |  Pubmed ID: 23857982

Oxidative stress plays an important role in cancer development and treatment. Recent data implicate the tumor suppressor BRCA1 in regulating oxidative stress, but the molecular mechanism and the impact in BRCA1-associated tumorigenesis remain unclear. Here, we show that BRCA1 regulates Nrf2-dependent antioxidant signaling by physically interacting with Nrf2 and promoting its stability and activation. BRCA1-deficient mouse primary mammary epithelial cells show low expression of Nrf2-regulated antioxidant enzymes and accumulate reactive oxygen species (ROS) that impair survival in vivo. Increased Nrf2 activation rescues survival and ROS levels in BRCA1-null cells. Interestingly, 53BP1 inactivation, which has been shown to alleviate several defects associated with BRCA1 loss, rescues survival of BRCA1-null cells without restoring ROS levels. We demonstrate that estrogen treatment partially restores Nrf2 levels in the absence of BRCA1. Our data suggest that Nrf2-regulated antioxidant response plays a crucial role in controlling survival downstream of BRCA1 loss. The ability of estrogen to induce Nrf2 posits an involvement of an estrogen-Nrf2 connection in BRCA1 tumor suppression. Lastly, BRCA1-mutated tumors retain a defective antioxidant response that increases the sensitivity to oxidative stress. In conclusion, the role of BRCA1 in regulating Nrf2 activity suggests important implications for both the etiology and treatment of BRCA1-related cancers.

Amyloid Precursor Protein in Human Breast Cancer: an Androgen-induced Gene Associated with Cell Proliferation

Cancer Science. Nov, 2013  |  Pubmed ID: 23889773

Amyloid precursor protein (APP) is a transmembrane protein that is highly expressed in brain tissue. Recently, APP has been implicated in some human malignancies, and its regulation by androgens has also been demonstrated. Such findings suggest the importance of APP in hormone-dependent breast carcinoma, but APP has not yet been examined in breast carcinoma tissues. Therefore, in this study, we examined the biological and clinical significance of APP in breast carcinoma using immunohistochemistry and in vitro studies. APP immunoreactivity was detected in 57 out of 117 (49%) breast carcinoma tissues examined, and it was positively associated with androgen receptor (AR) expression. APP immunoreactivity was also significantly associated with Ki-67 LI and increased risk of recurrence in the estrogen receptor (ER)-positive cases, and was an independent prognostic factor in these patients. Subsequent in vitro experiments demonstrated that APP mRNA expression was significantly induced by biologically active androgen dihydrotestosterone in both a dose-dependent and a time-dependent manner in MCF-7 breast carcinoma cells, which was potently suppressed by an AR blocker hydroxyflutamide. Moreover, cell proliferation activity of MCF-7 and MDA-MB-231 cells was significantly associated with their APP expression level. These findings suggest that APP is an androgen-induced gene that promotes proliferation activity of breast carcinoma cells. Moreover, APP immunohistochemical status is considered a potent prognostic factor in ER-positive breast cancer patients.

Toxicity and Efficacy Evaluation of Multiple Targeted Polymalic Acid Conjugates for Triple-negative Breast Cancer Treatment

Journal of Drug Targeting. Dec, 2013  |  Pubmed ID: 24032759

Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(β-L-malic acid) (PMLA) platform, targeting human triple-negative breast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blocking synthesis of epidermal growth factor receptor, and α4 and β1 chains of laminin-411, the tumor vascular wall protein and angiogenesis marker. PMLA and nanodrug biocompatibility and toxicity at low and high dosages were evaluated in vitro and in vivo. The dual-action nanodrug and single-action precursor nanoconjugates were assessed under in vitro conditions and in vivo with multiple treatment regimens (6 and 12 treatments). The monitoring of TNBC treatment in vivo with different drugs included blood hematologic and immunologic analysis after multiple intravenous administrations. The present study demonstrates that the dual-action nanoconjugate is highly effective in preclinical TNBC treatment without side effects, supported by hematologic and immunologic assays data. PMLA-based nanodrugs of the Polycefin™ family passed multiple toxicity and efficacy tests in vitro and in vivo on preclinical level and may prove to be optimized and efficacious for the treatment of cancer patients in the future.

Association of Positive EBAG9 Immunoreactivity with Unfavorable Prognosis in Breast Cancer Patients Treated with Tamoxifen

Clinical Breast Cancer. Dec, 2013  |  Pubmed ID: 24119785

Breast cancer is primarily a hormone-dependent tumor that is regulated by the status of the estrogen and progesterone receptors. We previously identified EBAG9 as an estrogen-responsive gene in MCF-7 human breast carcinoma cells. Upregulation of EBAG9 expression has been observed in several malignant tumors such as advanced breast cancers, indicating that EBAG9 might contribute to tumor progression.

MiR-424/503-mediated Rictor Upregulation Promotes Tumor Progression

PloS One. 2013  |  Pubmed ID: 24244675

mTOR complex 2 (mTORC2) signaling is upregulated in multiple types of human cancer, but the molecular mechanisms underlying its activation and regulation remain elusive. Here, we show that microRNA-mediated upregulation of Rictor, an mTORC2-specific component, contributes to tumor progression. Rictor is upregulated via the repression of the miR-424/503 cluster in human prostate and colon cancer cell lines that harbor c-Src upregulation and in Src-transformed cells. The tumorigenicity and invasive activity of these cells were suppressed by re-expression of miR-424/503. Rictor upregulation promotes formation of mTORC2 and induces activation of mTORC2, resulting in promotion of tumor growth and invasion. Furthermore, downregulation of miR-424/503 is associated with Rictor upregulation in colon cancer tissues. These findings suggest that the miR-424/503-Rictor pathway plays a crucial role in tumor progression.

Polymorphism of SLC25A32, the Folate Transporter Gene, is Associated with Plasma Folate Levels and Bone Fractures in Japanese Postmenopausal Women

Geriatrics & Gerontology International. Dec, 2013  |  Pubmed ID: 24354357

Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture.

Vitamin K: Novel Molecular Mechanisms of Action and Its Roles in Osteoporosis

Geriatrics & Gerontology International. Jan, 2014  |  Pubmed ID: 23530597

Vitamin K is a fat-soluble vitamin, which is involved in blood coagulation mediated by maintaining the activity of coagulation factors in the liver. Vitamin K also has extrahepatic actions and has been shown to prevent bone fractures in clinical studies. In addition, epidemiological studies suggest that a lack of vitamin K is associated with several geriatric diseases, including osteoporosis, osteoarthritis, dementia and arteriosclerosis. It has also been shown that vitamin K contributes to the prevention and treatment of some kinds of malignancies. Recently, we discovered a novel role for vitamin K as a ligand of the nuclear receptor, steroid and xenobiotic receptor (SXR), and its murine ortholog, pregnane X receptor (PXR). In addition to its established roles as a cofactor of γ-glutamyl carboxylase (GGCX) in mediating post-transcriptional modifications, vitamin K has a different mode of action mediated by transcriptional regulation of SXR/PXR target genes. Analysis of bone tissue from PXR-deficient mice showed that the bone protective effects of vitamin K are partially mediated by SXR/PXR-dependent signaling. The discoveries of a novel mode of vitamin K action have opened up new possibilities that vitamin K might be useful for prevention or treatment of a variety of diseases that affect the geriatric population.

Bat Lyssaviruses, Northern Vietnam

Emerging Infectious Diseases. Jan, 2014  |  Pubmed ID: 24377728

Utility of 320-detector Row CT for Diagnosis and Therapeutic Strategy for Paraclinoid and Intracavernous Aneurysms

Acta Neurochirurgica. Mar, 2014  |  Pubmed ID: 24445734

The aim of this study was (1) to assess the diagnostic accuracy of 320-detector row computed tomography (CT) for paraclinoid and intracavernous aneurysms, and (2) to investigate whether this method provides sufficient information for surgery.

TAp73 is Required for Spermatogenesis and the Maintenance of Male Fertility

Proceedings of the National Academy of Sciences of the United States of America. Feb, 2014  |  Pubmed ID: 24449892

The generation of viable sperm proceeds through a series of coordinated steps, including germ cell self-renewal, meiotic recombination, and terminal differentiation into functional spermatozoa. The p53 family of transcription factors, including p53, p63, and p73, are critical for many physiological processes, including female fertility, but little is known about their functions in spermatogenesis. Here, we report that deficiency of the TAp73 isoform, but not p53 or ΔNp73, results in male infertility because of severe impairment of spermatogenesis. Mice lacking TAp73 exhibited increased DNA damage and cell death in spermatogonia, disorganized apical ectoplasmic specialization, malformed spermatids, and marked hyperspermia. We demonstrated that TAp73 regulates the mRNA levels of crucial genes involved in germ stem/progenitor cells (CDKN2B), spermatid maturation/spermiogenesis (metalloproteinase and serine proteinase inhibitors), and steroidogenesis (CYP21A2 and progesterone receptor). These alterations of testicular histology and gene expression patterns were specific to TAp73 null mice and not features of mice lacking p53. Our work provides previously unidentified in vivo evidence that TAp73 has a unique role in spermatogenesis that ensures the maintenance of mitotic cells and normal spermiogenesis. These results may have implications for the diagnosis and management of human male infertility.

A Novel Acylaminoimidazole Derivative, WN1316, Alleviates Disease Progression Via Suppression of Glial Inflammation in ALS Mouse Model

PloS One. 2014  |  Pubmed ID: 24498180

Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron degenerative disease. Given that oxidative stress and resulting chronic neuronal inflammation are thought to be central pathogenic, anti-oxidative agents and modulators of neuronal inflammation could be potential therapies for ALS. We report here that the novel small molecular compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316) selectively suppresses oxidative stress-induced cell death and neuronal inflammation in the late-stage ALS mice. WN1316 has high blood-brain-barrier permeability and water solubility, and boosts both neuronal apoptosis inhibitory protein (NAIP) and NF-E2-related factor 2 (Nrf2) which governed glutathione (GSH)-related anti-oxidation pathway protecting motor neurons against oxidative injuries. Post-onset oral administration of low dose (1-100 µg/kg/day) WN1316 in ALS(SOD1(H46R)) and ALS(SOD1(G93A)) mice resulted in sustained improved motor function and post onset survival rate. Immunohistochemical analysis revealed less DNA oxidative damage and motor neuronal inflammation as well as repression of both microgliosis and astrocytosis, concomitant down regulation of interleukin-1β and inducible nitric oxide synthase, and preservation of the motoneurons in anterior horn of lumbar spinal cord and skeletal muscle (quadriceps femoris). Thus, WN1316 would be a novel therapeutic agent for ALS.

Phylogeographic Analysis of Rabies Viruses in the Philippines

Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases. Apr, 2014  |  Pubmed ID: 24512808

Rabies still remains a public health threat in the Philippines. A significant number of human rabies cases, about 200-300 cases annually, have been reported, and the country needs an effective strategy for rabies control. To develop an effective control strategy, it is important to understand the transmission patterns of the rabies viruses. We conducted phylogenetic analyses by considering the temporal and spatial evolution of rabies viruses to reveal the transmission dynamics in the Philippines. After evaluating the molecular clock and phylogeographic analysis, we estimated that the Philippine strains were introduced from China around the beginning of 20th century. Upon this introduction, the rabies viruses evolved within the Philippines to form three major clades, and there was no indication of introduction of other rabies viruses from any other country. However, within the Philippines, island-to-island migrations were observed. Since then, the rabies viruses have diffused and only evolved within each island group. The evolutionary pattern of these viruses was strongly shaped by geographical boundaries. The association index statistics demonstrated a strong spatial structure within the island group, indicating that the seas were a significant geographical barrier for viral dispersal. Strong spatial structure was also observed even at a regional level, and most of the viral migrations (79.7% of the total median number) in Luzon were observed between neighboring regions. Rabies viruses were genetically clustered at a regional level, and this strong spatial structure suggests a geographical clustering of transmission chains and the potential effectiveness of rabies control that targets geographical clustering. Dog vaccination campaigns have been conducted independently by local governments in the Philippines, but it could be more effective to implement a coordinated vaccination campaign among neighboring areas to eliminate geographically-clustered rabies transmission chains.

Liver-specific γ-glutamyl Carboxylase-deficient Mice Display Bleeding Diathesis and Short Life Span

PloS One. 2014  |  Pubmed ID: 24520408

Vitamin K is a fat-soluble vitamin that plays important roles in blood coagulation and bone metabolism. One of its functions is as a co-factor for γ-glutamyl carboxylase (Ggcx). Conventional knockout of Ggcx causes death shortly after birth in homozygous mice. We created Ggcx-floxed mice by inserting loxP sequences at the sites flanking exon 6 of Ggcx. By mating these mice with albumin-Cre mice, we generated Ggcx-deficient mice specifically in hepatocytes (Ggcx(Δliver/Δliver) mice). In contrast to conventional Ggcx knockout mice, Ggcx(Δliver/Δliver) mice had very low activity of Ggcx in the liver and survived several weeks after birth. Furthermore, compared with heterozygous mice (Ggcx(+/Δliver) ), Ggcx(Δliver/Δliver) mice had shorter life spans. Ggcx(Δliver/Δliver) mice displayed bleeding diathesis, which was accompanied by decreased activity of coagulation factors II and IX. Ggcx-floxed mice can prove useful in examining Ggcx functions in vivo.

Efficacy of Pre-surgical Axitinib for Shrinkage of Inferior Vena Cava Thrombus in a Patient with Advanced Renal Cell Carcinoma

Japanese Journal of Clinical Oncology. Apr, 2014  |  Pubmed ID: 24571808

The authors present the first case report of pre-surgical axitinib treatment on primary renal tumor and vena cava thrombus. We report the case of a 78-year-old woman with renal cell carcinoma and inferior vena cava tumor thrombus, successfully downstaged with pre-surgical therapy with axitinib. A significant objective response was observed for tumor size and thrombus. After initiation of axitinib therapy, computed tomography showed a decrease, from 57 to 51 mm, in the maximal renal tumor diameter. The tumor thrombus had shortened to 42 mm and had moved to the inferior hepatic vein (Levels 4-3), thereby obviating the need for thoracotomy. The patient finally accepted surgical treatment. Our case was enabled to perform less surgery for advanced renal cell carcinoma with tumor thrombus using axitinib as a pre-surgical therapy.

Largen: a Molecular Regulator of Mammalian Cell Size Control

Molecular Cell. Mar, 2014  |  Pubmed ID: 24656129

Little is known about how mammalian cells maintain cell size homeostasis. We conducted a novel genetic screen to identify cell-size-controlling genes and isolated Largen, the product of a gene (PRR16) that increased cell size upon overexpression in human cells. In vitro evidence indicated that Largen preferentially stimulates the translation of specific subsets of mRNAs, including those encoding proteins affecting mitochondrial functions. The involvement of Largen in mitochondrial respiration was consistent with the increased mitochondrial mass and greater ATP production in Largen-overexpressing cells. Furthermore, Largen overexpression led to increased cell size in vivo, as revealed by analyses of conditional Largen transgenic mice. Our results establish Largen as an important link between mRNA translation, mitochondrial functions, and the control of mammalian cell size.

Systemic Identification of Estrogen-regulated Genes in Breast Cancer Cells Through Cap Analysis of Gene Expression Mapping

Biochemical and Biophysical Research Communications. May, 2014  |  Pubmed ID: 24746470

To explore the estrogen-regulated genes genome-widely in breast cancer, cap analysis of gene expression (CAGE) sequencing was performed in MCF-7 cells under estrogen treatment. Estrogen-regulated expressional changes were found in 1537 CAGE tag clusters (TCs) (⩾1.5 or ⩽0.66-folds). Among them, 15 TCs were situated in the vicinity of (⩽10kb) reported estrogen receptor-binding sites. Knockdown experiments of the 15 TC-associated genes demonstrated that the genes such as RAMP3, ISOC1 and GPRC5C potentially regulate the growth or migration of MCF-7 cells. These results suggest that CAGE sequencing will reveal novel estrogen target genes in breast cancer.

Large-scale Analysis Reveals a Functional Single-nucleotide Polymorphism in the 5'-flanking Region of PRDM16 Gene Associated with Lean Body Mass

Aging Cell. May, 2014  |  Pubmed ID: 24863034

Genetic factors are important for the development of sarcopenia, a geriatric disorder characterized by low lean body mass. The aim of this study was to search for novel genes that regulate lean body mass in humans. We performed a large-scale search for 250K single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) using SNP arrays in 1081 Japanese postmenopausal women. We focused on an SNP (rs12409277) located in the 5'-flanking region of the PRDM16 (PRD1-BF-1-RIZ1 homologous domain containing protein 16) gene that showed a significant P value in our screening. We demonstrated that PRDM16 gene polymorphisms were significantly associated with total body BMD in 1081 postmenopausal Japanese women. The rs12409277 SNP affected the transcriptional activity of PRDM16. The subjects with one or two minor allele(s) had a higher lean body mass than the subjects with two major alleles. Genetic analyses uncovered the importance of the PRDM16 gene in the regulation of lean body mass.

simple hit counter