Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Cell Cycle: The complex series of phenomena, occurring between the end of one Cell division and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes Interphase, which includes G0 phase; G1 phase; S Phase; and G2 phase, and Cell division phase.

Cell Cycle Analysis

JoVE 5641

Cell cycle refers to the set of events through which a cell grows, replicates its genome, and ultimately divides into two daughter cells through the process of mitosis. Because the amount of DNA in a cell shows characteristic changes throughout the cycle, techniques known as cell cycle analysis can be used to separate a population of cells according to the different phases of cell cycle they are in, based on their varying DNA content.This video will cover the principles behind cell cycle analysis via DNA-staining. We will review a generalized protocol for performing this staining using bromodeoxyuridine (BrdU, a thymidine analog that is incorporated into newly synthesized DNA strands) and propidium iodide (PI, a DNA dye that stains all DNA), followed by analysis of the stained cells with flow cytometry. During flow cytometry, a single cell suspension of fluorescently labeled cells is passed through an instrument with a laser beam and the fluorescence of each cell is read. We will then discuss how to interpret data from flow cytometric scatter plots, and finally, look at a few applications of this technique.


 Cell Biology

Yeast Reproduction

JoVE 5097

Saccharomyces cerevisiae is a species of yeast that is an extremely valuable model organism. Importantly, S. cerevisiae is a unicellular eukaryote that undergoes many of the same biological processes as humans. This video provides an introduction to the yeast cell cycle, and explains how S. cerevisiae reproduces both asexually and sexually Yeast reproduce asexually through a process known as budding. In contrast, yeast sometimes participate in sexual reproduction, which is important because it introduces genetic variation to a population. During environmentally stressful conditions, S. cerevisiae will undergo meiosis and form haploid spores that are released when environmental conditions improve. During sexual reproduction, these haploid spores fuse, ultimately forming a diploid zygote. In the lab, yeast can be genetically manipulated to further understand the genetic regulation of the cell cycle, reproduction, aging, and development. Therefore, scientists study the reproduction of yeast to gain insight into processes that are important in human biology.


 Biology I

An Introduction to Cell Division

JoVE 5640

Cell division is the process by which a parent cell divides and gives rise to two or more daughter cells. It is a means of reproduction for single-cell organisms. In multicellular organisms, cell division contributes to growth, development, repair, and the generation of reproductive cells (sperms and eggs). Cell division is a tightly regulated process, and aberrant cell division can cause diseases, notably cancer. JoVE's Introduction to Cell Division will cover a brief history of the landmark discoveries in the field. We then discuss several key questions and methods, such as cell cycle analysis and live cell imaging. Finally, we showcase some current applications of these techniques in cell division research.


 Cell Biology

C. elegans Development and Reproduction

JoVE 5110

Ceanorhabditis elegans is a powerful tool to help understand how organisms develop from a single cell into a vast interconnected array of functioning tissues. Early work in C. elegans traced the complete cell lineage and structure at the electron microscopy level, allowing researchers unprecedented insight into the connection between genes, development and disease. Appreciating the stereotyped development and reproductive program of C. elegans is essential to using this model organism to its experimental fullest. This video will give you a peek into the development of a worm from fertilization to hatching, and walk you though the life stages of the newly hatched larvae on its journey to reproductive maturity. The video will detail how the major axes are established, which founder cells give rise to what tissues in the developing embryo and how to discriminate between the four larval stages. Finally, you will learn how to set up a genetic cross and we"ll visit a few applications that manipulate the development and reproduction of C. elegans to experimental benefit.


 Biology I

Drosophila Development and Reproduction

JoVE 5093

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental research. This video introduces each stage of the Drosophila life cycle and details the physical characteristics and major developmental events that occur during each stage. Next, the video discusses the genetic regulation of pattern formation, which is important for establishing the body plan of the organism and specifying individual tissues and organs. In addition, this video gives an overview of Drosophila reproduction, and how to use the reproductive characteristics of Drosophila to set up a genetic cross. Finally, we discuss examples of how the principles of Drosophila development and reproduction can be applied to research. These applications include RNA interference, behavioral assays of mating behaviors, and live imaging techniques that allow us to visualize development as a dynamic process. Overall, this video highlights the importance of understanding development and reproduction in Drosophila, and how this knowledge can be use


 Biology I

Zebrafish Reproduction and Development

JoVE 5151

The zebrafish (Danio rerio) has become a popular model for studying genetics and developmental biology. The transparency of these animals at early developmental stages permits the direct visualization of tissue morphogenesis at the cellular level. Furthermore, zebrafish are amenable to genetic manipulation, allowing researchers to determine the effect of gene expression on the development of a vertebrate with a high degree of genetic similarity to humans. This video provides a brief overview of the major phases of zebrafish development, with particular focus on the first 24 hours post fertilization (hpf). The discussion begins with a zygote consisting of a single cell, or blastomere, atop a large ball of yolk. Cleavage of the blastomere is then shown to produce an embryo containing thousands of cells within a matter of hours. Next, the dramatic cellular movements known as epiboly and gastrulation are explained, revealing how they contribute to reshaping a mass of cells into a moving embryo with a beating heart in just 1 day. The presentation follows embryo development through the hatching phase, when they become swimming, feeding larvae. Important considerations for caring for larvae are incorporated, including a brief review of how fish are raised to adulthood in a dedicated facility known as the nursery. Finally, the video concludes with some commo


 Biology II

An Introduction to Cell Metabolism

JoVE 5652

In cells, critical molecules are either built by joining together individual units like amino acids or nucleotides, or broken down into smaller components. Respectively, the reactions responsible for this are referred to as anabolic and catabolic. These reactions require or produce energy typically in the form of a “high-energy” molecule called ATP. Together, these processes make up “Cell Metabolism,” and are hallmarks of healthy, living cells.JoVE’s introduction to cell metabolism briefly reviews the rich history of this field, ranging from early studies on photosynthesis to more recent discoveries pertaining to energy production in all cells. This is followed by a discussion of some key questions asked by scientists studying metabolism, and common methods that they apply to answer these questions. Finally, we’ll explore how current researchers are studying alterations in metabolism that accompany metabolic disorders, or that occur following exposure to environmental stressors.


 Cell Biology

An Introduction to Saccharomyces cerevisiae

JoVE 5081

Saccharomyces cerevisiae (commonly known as baker’s yeast) is a single-celled eukaryote that is frequently used in scientific research. S. cerevisiae is an attractive model organism due to the fact that its genome has been sequenced, its genetics are easily manipulated, and it is very easy to maintain in the lab. Because many yeast proteins are similar in sequence and function to those found in other organisms, studies performed in yeast can help us to determine how a particular gene or protein functions in higher eukaryotes (including humans). This video provides an introduction to the biology of this model organism, how it was discovered, and why labs all over the world have selected it as their model of choice. Previous studies performed in S. cerevisiae that have contributed to our understanding of important cellular processes such as the cell cycle, aging, and cell death are also discussed. Finally, the video describes some of the many ways in which yeast cells are put to work in modern scientific research, including protein purification and the study of DNA repair mechanisms and other cellular processes related to Alzheimer’s and Parkinson’s diseases.


 Biology I

The ATP Bioluminescence Assay

JoVE 5653

In fireflies, the luciferase enzyme converts a compound called luciferin into oxyluciferin, and produces light or “luminescence” as a result. This reaction requires energy derived from ATP in order to proceed, so researchers have exploited the luciferase-luciferin interaction to gauge ATP levels in cells. Given ATP’s role as the cell’s currency of energy, the ATP bioluminescence assay can provide insight into cellular metabolism and overall cell health.In this video, JoVE discusses cellular respiration, specifically reviewing how glucose metabolism results in ATP production. This is followed by principles behind the ATP bioluminescence assay and a generalized protocol for this technique. Finally, a survey of how researchers are currently using the ATP bioluminescence assay to evaluate cell viability in a variety of experimental conditions.


 Cell Biology

An Introduction to the Zebrafish: Danio rerio

JoVE 5128

Zebrafish (Danio rerio) are small freshwater fish that are used as model organisms for biomedical research. The many strengths of these fish include their high degree of genetic conservation with humans and their simple, inexpensive maintenance. Additionally, gene expression can be easily manipulated in zebrafish embryos, and their transparency allows for observation of developmental processes. This overview video first introduces basic zebrafish biology, including their phylogeny, life cycle, and natural environment, before presenting the features that make them so useful in the lab. A brief history of zebrafish research is also provided through a review of major discoveries made in fish, ranging from the early establishment of methods for efficient genetic screening to the discovery of novel therapeutics for human diseases such as cancer. Finally, some of the many avenues of experimentation performed in zebrafish are discussed, including immunological and developmental studies.


 Biology II

Live Cell Imaging of Mitosis

JoVE 5642

Mitosis is a form of cell division in which a cell’s genetic material is divided equally between two daughter cells. Mitosis can be broken down into six phases, during each of which the cell’s components, such as its chromosomes, show visually distinct characteristics. Advances in fluorescence live cell imaging have allowed scientists to study this process in great detail, providing important insights into the biological control of this process and how it might go wrong in diseases such as cancer. We begin this video by breaking down the phases of mitosis, and introducing some important considerations for optimal visualization of the process using live cell imaging. We then walk through the steps for running a live cell mitosis imaging experiment and discuss various analysis methods, including the generation of montages, movies, and 3D recreations. Finally, we take a look at how visualizing the mitotic process can be applied to answering questions in cell biology.


 Cell Biology

Proper Use of Autoclaves

JoVE 10381

Robert M. Rioux & Zhifeng Chen, Pennsylvania State University, University Park, PA

Autoclaving is one of the most commonly used methods in the laboratory for the purpose of decontamination. The most common items decontaminated with an autoclave are those that contact biological samples (typically those containing microorganisms). An autoclave works by utilizing pressurized high temperature steam to kill microorganisms present in the loaded materials. Sufficient steam flow and heat transfer are essential for highly efficient autoclaving, which are the key principles to consider when packaging materials. Safety needs to be considered when working with an autoclave due to the high pressure and temperature employed therein, which also sets limits on which materials are compatible and may necessitate special attention when packaging, loading, and unloading materials.


 Lab Safety

Yeast Maintenance

JoVE 5095

Research performed in the yeast Saccharomyces cerevisiae has significantly improved our understanding of important cellular phenomona such as regulation of the cell cycle, aging, and cell death. The many benefits of working with S. cerevisiae include the facts that they are inexpensive to grow in the lab and that many ready-to-use strains are now commercially available. Nevertheless, proper maintenance of this organism is critical for successful experiments. This video will provide an overview of how to grow and maintain S. cerevisiae in the lab. Basic concepts required for monitoring the proliferation of a yeast population, such as how to generate a growth curve using a spectrophotometer, are explained. This video also demonstrates the hands-on techniques required to maintain S. cerevisiae in the lab, including preparation of media, how to start a new culture of yeast cells, and how to store those cultures. Finally, the video shows off some of the ways these handling and maintenance techniques are applied in scientific research.


 Biology I

Genetic Crosses

JoVE 5541

To dissect genetic processes or create organisms with novel suites of traits, scientists can perform genetic crosses, or the purposeful mating of two organisms. The recombination of parental genetic material in the offspring allows researchers to deduce the functions, interactions, and locations of genes.

This video will examine how genetic crosses were influential in developing Mendel's three laws of inheritance, which form the basis of our understanding of genetics. One genetic crossing technique that was first developed for single-celled organisms such as yeast, known as tetrad analysis, will then be presented in detail, followed by some examples of how this classical tool is used in genetic studies today.


 Genetics

Optical Biosensing

JoVE 5795

Optical biosensors utilize light to detect the binding of a target molecule. These sensors can utilize a label molecule, which produces a measurable signal such as fluorescence. Or these sensors can be label-free, and use the changes in optical properties, such as refractive index, to sense for the binding of the target molecule. This video introduces both label and label-free optical biosensors, demonstrates their use in the laboratory, and shows some applications of the technology.


 Bioengineering

An Introduction to the Chick: Gallus gallus domesticus

JoVE 5153

The chicken embryo (Gallus gallus domesticus) is an extremely valuable model organism for research in developmental biology, in part because most of their development takes place within an egg that is incubated outside of the mother. As a result, early developmental stages can be accessed, visualized and manipulated by simply creating a small hole in the eggshell. Since billions of chickens are raised worldwide for meat and egg production, scientists can easily and economically acquire large numbers of fertilized eggs throughout the year. Furthermore, chickens share significant genetic conservation with humans, so the genetic mechanisms that have been found to regulate chicken development are also relevant to our own biology. This video focuses on introducing the domesticated chicken as a scientific model. The discussion begins with a review of chicken phylogeny, revealing the features that make them amniotes, like other birds, reptiles, and mammals. Highlights from the millennia of chicken research will be presented, ranging from Aristotle’s postulates about the function of extra-embryonic membranes to more recent, Nobel-prize winning discoveries in neuroscience. Additionally, some current examples of studies performed in chicken embryos will be provided, such as in vivo tracking of cell movements during development and the recruitment of


 Biology II

Quantifying Environmental Microorganisms and Viruses Using qPCR

JoVE 10186

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Quantitative polymerase chain reaction (qPCR), also known as real-time PCR, is a widely-used molecular technique for enumerating microorganisms in the environment. Prior to this approach, quantifying microorganisms was limited largely to classical culture-based techniques. However, the culturing of microbes from environmental samples can be particularly challenging, and it is generally held that as few as 1 to 10% of the microorganisms present within environmental samples are detectable using these techniques. The advent of qPCR in environmental microbiology research has therefore advanced the field greatly by allowing for more accurate determination of concentrations of microorganisms such as disease-causing pathogens in environmental samples. However, an important limitation of qPCR as an applied microbiological technique is that living, viable populations cannot be differentiated from inactive or non-living populations. This video demonstrates the use of qPCR to detect pepper mild mottle virus from an environmental water sample.


 Environmental Microbiology

An Introduction to Caenorhabditis elegans

JoVE 5103

Caenorhabditis elegans is a microscopic, soil-dwelling roundworm that has been powerfully used as a model organism since the early 1970’s. It was initially proposed as a model for developmental biology because of its invariant body plan, ease of genetic manipulation and low cost of maintenance. Since then C. elegans has rapidly grown in popularity and is now utilized in numerous research endeavors, from studying the forces at work during locomotion to studies of neural circuitry. This video provides an overview of basic C. elegans biology, a timeline of the many milestones in its short but storied history, and finally a few exciting applications using C. elegans as a model organism.


 Biology I

Overview of Biosensing

JoVE 5794

Biosensors are devices that use a wide range of biological processes and physical properties in order to detect either a biological molecule, such as a protein or cell, or a non-biological molecule, such as a chemical component or contaminant. This interdisciplinary field utilizes electrical, optical, electrochemical, or even mechanical properties to detect the presence of the target molecule. This video introduces the field of biosensing, and reviews common types of biosensor technologies. This video also discusses key challenges in the field, and provides insight into how biosensors are used in the field.


 Bioengineering

Single Phase Inverter

JoVE 10250

Source: Ali Bazzi, Department of Electrical Engineering, University of Connecticut, Storrs, CT.

DC power is unidirectional and flows in one direction, whereas, AC current alternates directions at a frequency of 50-60 Hz. Most common electronic devices are designed to run off of AC power; therefore an input DC source must be inverted to AC. Inverters convert DC voltage to AC through switching action that repeatedly flips the polarity of the input DC source at the output or load side for part of a switching period. A typical power inverter requires a stable DC power input, which is then switched repeatedly using mechanical or electromagnetic switches. The output can be a square-wave, sine-wave or a variation of a sine-wave, depending on circuit design and the user needs. The objective of this experiment is to build and analyze the operation of DC/AC half-bridge inverters. Half-bridge inverters are the simplest form of DC/AC inverters, but are the building blocks for H-bridge, three-phase, and multi-level inverters. Square-wave switching is studied here for simplicity, but sinusoidal pulse width modulation (SPWM) and other modulation and switching schemes are typically used in DC/AC inverters.


 Electrical Engineering

Development and Reproduction of the Laboratory Mouse

JoVE 5159

Successful breeding of the laboratory mouse (Mus musculus) is critical to the establishment and maintenance of a productive animal colony. Additionally, mouse embryos are frequently studied to answer questions about developmental processes. A wide variety of genetic tools now exist for regulating gene expression during mouse embryonic and postnatal development, which can help scientists to understand more about heritable diseases affecting human development. This video provides an introduction to the reproduction and development of mice. In addition to clarifying the terminology used to describe developmental progression, the presentation reviews key stages of the mouse life cycle. First, major development events that take place in utero are described, with special attention given to the unique layout of early rodent embryos. Next, husbandry protocols are provided for postnatal mice, or pups, including the process of weaning, or removal of pups from their mother's cage. Since males and females must be separated at this stage to prevent unscheduled mating, the demonstration also reveals how to determine mouse sex. Subsequently, instructions are given for carrying out controlled mouse breeding, including screening for the copulatory plug, which is useful for precisely timed embryonic development. Finally, the video highlights strategies used to in


 Biology II

Fatigue of Metals

JoVE 10416

Source: Roberto Leon, Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA

The importance of studying metal fatigue in civil infrastructure projects was brought into the spotlight by the collapse of the Silver Bridge in Point Pleasant, West Virginia in 1967. The eyebar-chain suspension bridge over the Ohio River collapsed during evening rush hour, killing 46 people as a result of the failure of a single eyebar with a small 0.1-inch defect. The defect reached a critical length after repeated loading conditions and failed in a brittle fashion causing the collapse. This event garnered attention in the bridge engineering community and highlighted the importance of testing and monitoring fatigue in metals. Under normal service conditions, a material can be subjected to numerous applications of service (or everyday) loads. These loads are typically at most 30%-40% of the ultimate strength of the structure. However, after the accrual of repeated loadings, at magnitudes substantially below the ultimate strength, a material can experience what is termed fatigue failure. Fatigue failure can occur suddenly and without significant prior deformation and is linked with crack growth and rapid propagation. Fatigue is a complex process, with many factors affecting


 Structural Engineering

Fundamentals of Breeding and Weaning

JoVE 10293

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Millions of mice and rats are bred for use in biomedical research each year. Worldwide, there are several large commercial breeding facilities that supply mice to research laboratories, but many facilities choose to also breed mice and rats in-house to reduce costs and increase research options. When breeding in the animal facility, researchers are able to manipulate the genetics of the animals, time the pregnancies to meet the needs of the research, and work with embryos and neonates as required. Mice and rats can be bred in a variety of schemes and methods. Technical procedures, such as the use of vaginal cytology, visualization of the vaginal area, and observation of copulatory plugs, have been developed to assist with the synchronization of breeding to correspond to research requirements. This manuscript is an overview of the basic fundamentals of mouse and rat breeding and technical procedures used. More detailed descriptions of the complex breeding schemes, and the full description of the methods for vaginal cytology, are available in the list of references.


 Lab Animal Research

Flyback Converter

JoVE 10251

Source: Ali Bazzi, Department of Electrical Engineering, University of Connecticut, Storrs, CT.

A flyback converter is a buck-boost converter, which can both buck and boost. It has electrical isolation between the input and the output using a coupled inductor or a "flyback transformer." This coupled inductor enables a turns ratio that provides both voltage step-up and step-down capability, like in a regular transformer but with energy storage using the air-gap of the coupled inductor. The objective of this experiment is to study different characteristics of a flyback converter. This converter operates like a buck-boost converter but has electrical isolation through a coupled inductor. Open-loop operation with a manually-set duty ratio will be used. An approximation of the input-output relationship will be observed.


 Electrical Engineering

Flow Cytometric Detection of Newly-Formed Breast Cancer Stem Cell-like Cells After Apoptosis Reversal

1School of Life Sciences, Chinese University of Hong Kong, 2State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, 3Key Laboratory for Regenerative Medicine, Ministry of Education, Chinese University of Hong Kong, 4Centre for Novel Biomaterials, Chinese University of Hong Kong

Video Coming Soon

JoVE 58642


 JoVE In-Press

Evaluation of Biomarkers in Glioma by Immunohistochemistry on Paraffin-Embedded 3D Glioma Neurosphere Cultures

1Department of Neurosurgery, University of Michigan Medical School, 2Department of Cell & Developmental Biology, University of Michigan, 3INIBIOLP, Histology B-Pathology B, School of Medicine, UNLP

Video Coming Soon

JoVE 58931


 JoVE In-Press

Meso-Scale Particle Image Velocimetry Studies of Neurovascular Flows In Vitro

1Department of Mechanical Engineering, University of California, Riverside, 2Division of Interventional Neuroradiology, University of California, Los Angeles, 3Materials Science and Engineering Program, University of California, Riverside, 4Department of Bioengineering, University of California, Riverside

Video Coming Soon

JoVE 58902


 JoVE In-Press

Detection of a Circulating MicroRNA Custom Panel in Patients with Metastatic Colorectal Cancer

1Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 2Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 3Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS

Video Coming Soon

JoVE 58615


 JoVE In-Press

Isolation and Characterization of Human Umbilical Cord-derived Mesenchymal Stem Cells from Preterm and Term Infants

1Department of Pediatrics, Kobe University Graduate School of Medicine, 2Department of Pathology, Kobe Children's Hospital, 3Department of Pediatrics, Hyogo College of Medicine, 4Department of Developmental Pediatrics, Shizuoka Children's Hospital, 5Department of Pediatrics, Nihon University School of Medicine

Video Coming Soon

JoVE 58806


 JoVE In-Press

BtM, a Low-cost Open-source Datalogger to Estimate the Water Content of Nonvascular Cryptogams

1Real Jardín Botánico (CSIC-RJB), 2Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 3Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 4Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 5Department of Botany, Faculty of Science, University of South Bohemia

Video Coming Soon

JoVE 58700


 JoVE In-Press

Digital Analysis of Immunostaining of ZW10 Interacting Protein in Human Lung Tissues

1Department of Hematology, Zhongnan Hospital of Wuhan University, 2Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 3Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 4Department of Immunology, School of Basic Medical Sciences, Wuhan University, 5Department of Gastroenterology, Central Hospital of Wuhan, 6Department of Transfusion, Zhongnan Hospital of Wuhan University

Video Coming Soon

JoVE 58551


 JoVE In-Press

12345678939
More Results...