Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Visual Cortex: Area of the occipital lobe concerned with vision.

Visual Attention: fMRI Investigation of Object-based Attentional Control

JoVE 10272

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel— University of Southern California


The human visual system is incredibly sophisticated and capable of processing large amounts of information very quickly. However, the brain's capacity to process information is not an unlimited resource. Attention, the ability to…

 Neuropsychology

Vision

JoVE 10858

Vision is the result of light being detected and transduced into neural signals by the retina of the eye. This information is then further analyzed and interpreted by the brain. First, light enters the front of the eye and is focused by the cornea and lens onto the retina—a thin sheet of neural tissue lining the back of the eye. Because of refraction through the convex lens of the eye, images are projected onto the retina upside-down and reversed. Light is absorbed by the rod and cone photoreceptor cells at the back of the retina, causing a decrease in their rate of neurotransmitter release. In addition to detecting photons of light, color information is also encoded here, since different types of cones respond maximally to different wavelengths of light. The photoreceptors then send visual information to bipolar cells near the middle of the retina, which is followed by projection to ganglion cells at the front of the retina. Horizontal and amacrine cells mediate lateral interactions between these cell types, integrating information from multiple photoreceptors. This integration aids in the initial processing of visual information, such as detecting simple features, like edges. Along with glial cells, the axons of the retinal ganglion cells make up the optic nerve, which transmits visual information to the brain. The optic nerve partially cro

 Core: Sensory Systems

What is a Sensory System?

JoVE 10849

Sensory systems detect stimuli—such as light and sound waves—and transduce them into neural signals that can be interpreted by the nervous system. In addition to external stimuli detected by the senses, some sensory systems detect internal stimuli—such as the proprioceptors in muscles and tendons that send feedback about limb position.

Sensory systems include the visual, auditory, gustatory (taste), olfactory (smell), somatosensory (touch, pain, temperature, and proprioception), and vestibular (balance, spatial orientation) systems. All sensory systems have receptor cells that are specialized to detect a particular type of stimulus. For example, hair cells in the inner ear have cilia that move in the presence of sound waves, while olfactory receptor neurons in the nasal cavity have receptors that bind to odorant molecules. The presence of an appropriate stimulus triggers electrochemical changes in the nervous system. This stimulus typically changes the membrane potential of a sensory neuron, triggering an action potential. The information is then transmitted from the sensory organ to the spinal cord and then the brain, or directly to the brain (as in the visual system). The different types of sensory information—also called modalities—travel in different pathways through the central nervous system, but most

 Core: Sensory Systems

Decoding Auditory Imagery with Multivoxel Pattern Analysis

JoVE 10267

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California


Imagine the sound of a bell ringing. What is happening in the brain when we conjure up a sound like this in the "mind's ear?" There is growing evidence that the brain uses the same mechanisms for imagination that it uses for perception.1 For …

 Neuropsychology

The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism

1Department of Psychology, University of Montréal, 2Montreal Neurological Institute, McGill University, 3Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota

JoVE 51631

 Neuroscience

Eye Exam

JoVE 10149

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA


Proper evaluation of the eyes in a general practice setting involves vision testing, orbit inspection, and ophthalmoscopic examination. Before beginning the exam, it is crucial to be familiar…

 Physical Examinations II

Mental Rotation

JoVE 10115

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University



Visual mental imagery refers to the ability to conjure images in one’s mind’s eye. This allows people to process visual material above and beyond the constraints of a current point-of-view; for example, a person could…

 Cognitive Psychology

Crowding

JoVE 10280

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University


Human vision depends on light-sensitive neurons that are arranged in the back of the eye on a tissue called the retina. The neurons, called the rods and cones because of their shapes, are not uniformly distributed on the retina. Instead, there is a region in the center…

 Sensation and Perception

Finding Your Blind Spot and Perceptual Filling-in

JoVE 10195

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University


In the back of everyone's eye is a small piece of neural tissue called the retina. The retina has photosensitive cells that respond to stimulation by light. The responses of these cells are sent into the brain through the optic nerve, a bundle of neural fibers. In each…

 Sensation and Perception

Object Substitution Masking

JoVE 10279

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University


Visual masking is a term used by perceptual scientists to refer to a wide range of phenomena in which in an image is presented but not perceived by an observer because of the presentation of a second image. There are several different kinds of masking, many of them…

 Sensation and Perception

Color Afterimages

JoVE 10194

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University


Human color vision is impressive. People with normal color vision can tell apart millions of individual hues. Most amazingly, this ability is achieved with fairly simple hardware.


Part of the power of human color vision comes from a…

 Sensation and Perception

Just-noticeable Differences

JoVE 10229

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University


Psychophysics is a branch of psychology and neuroscience that tries to explain how physical quantities are translated into neural firing and mental representations of magnitude. One set of questions in this area pertains to just-noticeable differences (JND): How much…

 Sensation and Perception

Measuring Reaction Time and Donders' Method of Subtraction

JoVE 10087

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University



The ambition of experimental psychology is to characterize the mental events that support the human ability to solve problems, perceive the world, and turn thoughts into words and sentences. But people cannot see or feel those mental…

 Cognitive Psychology

A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain

1Division of Neurotoxicology, National Center for Toxicological Research, 2Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, 3Office of Planning, Finance, and Information Technology, National Center for Toxicological Research

JoVE 4285

 Neuroscience

Electrode Positioning and Montage in Transcranial Direct Current Stimulation

1Headache & Orofacial Pain Effort (H.O.P.E.), Biologic & Material Sciences, School of Dentistry, University of Michigan, 2Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 3Charité, University Medicine Berlin, 4Department of Biomedical Engineering, The City College of New York

JoVE 2744

 Neuroscience

Brain State-dependent Brain Stimulation with Real-time Electroencephalography-Triggered Transcranial Magnetic Stimulation

1Department of Neurology & Stroke, University of Tübingen, 2Hertie Institute for Clinical Brain Research, University of Tübingen, 3Department of Neuroscience and Biomedical Engineering, Aalto University

JoVE 59711

 Behavior

Radiotracer Administration for High Temporal Resolution Positron Emission Tomography of the Human Brain: Application to FDG-fPET

1Monash Biomedical Imaging, Monash University, 2Australian Research Council Centre of Excellence for Integrative Brain Function, 3Turner Institute for Brain and Mental Health, Monash University, 4Department of Medical Imaging, Monash Health, 5Department of Electrical and Computer Systems Engineering, Monash University

JoVE 60259

 Behavior

Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents

1Neuroscience Center, University of Helsinki, 2Neurotar LTD, 3A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 4Laboratory Animal Center, University of Helsinki

JoVE 51869

 Behavior

Generation and On-Demand Initiation of Acute Ictal Activity in Rodent and Human Tissue

1Division of Fundamental Neurobiology, Krembil Research Institute, 2Institute of Medical Science, Faculty of Medicine, University of Toronto, 3Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4Division of Neurosurgery, Department of Surgery, University of Toronto, 5Division of Neurology, Department of Medicine, University of Toronto, 6Department of Physiology, University of Toronto

JoVE 57952

 Neuroscience

Non-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with 18F-FDG

1W. M. Keck Center for Transgene Research, University of Notre Dame, 2Department of Chemistry and Biochemistry, University of Notre Dame, 3Notre Dame Integrated Imaging Facility, University of Notre Dame, 4Department of Biological Sciences, University of Notre Dame, 5Harper Cancer Research Institute, University of Notre Dame

JoVE 51495

 Medicine

Extracellular Recording of Neuronal Activity Combined with Microiontophoretic Application of Neuroactive Substances in Awake Mice

1Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, 2Neural Systems Laboratory, Institute for Systems Research, University of Maryland, 3Medical Research Council Institute of Hearing Research, 4Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca

JoVE 53914

 Neuroscience

Improved 3D Hydrogel Cultures of Primary Glial Cells for In Vitro Modelling of Neuroinflammation

1Department of Psychiatry, University of Alberta, 2Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, 3Department of Chemical and Materials Engineering, University of Alberta, 4Division of Physical Medicine and Rehabilitation, University of Alberta, 5Centre for Neuroscience, University of Alberta

JoVE 56615

 Bioengineering
123
More Results...