Una introducción a la transfección

Basic Methods in Cellular and Molecular Biology

Your institution must subscribe to JoVE's Basic Biology collection to access this content.

Fill out the form below to receive a free trial or learn more about access:

Welcome!

Enter your email below to get your free 1 hour trial to JoVE!





By clicking "Submit", you agree to our policies.

 

Summary

La transfección es el proceso de inserción de material genético, como el DNA y el RNA trenzado doble, en células de mamíferos. La inserción de ADN en una célula permite la expresión, o la producción de proteínas utilizando la maquinaria propia de células, mientras que la inserción de ARN en una célula se utiliza abajo-para regular la producción de una proteína específica deteniendo la traducción. Mientras que el sitio de acción transfected RNA es el citoplasma, ADN debe ser transportado al núcleo para transfección eficaz. Allí, el ADN puede expresarse transitoriamente por un período corto de tiempo, o ser incorporado en la DNA genomic, donde el cambio se pasa de célula a célula como divide.

Este video describe los conceptos básicos detrás de química mediadas transfecciones y presenta algunos de los reactivos más comúnmente utilizadas, como cargados lípidos, polímeros, fosfato de calcio. Se describe cada paso de la preparación de las células para la transfección a través del análisis de eficiencia de transfección. Además, la sección de aplicaciones de este artículo de video describe el uso de electroporación y una transfección biolística como métodos alternativos para introducir ácidos nucleicos en células de mamíferos. También describe un uso avanzado de la transfección donde co transfección de interferencia RNA y DNA se introduce como una forma abajo-para regular una proteína que ocurre naturalmente mientras que al mismo tiempo producir una variante mutante de la misma dentro de la misma célula.

Cite this Video

JoVE Science Education Database. Métodos Básicos en Biología Celular y Molecular. Una introducción a la transfección. JoVE, Cambridge, MA, (2017).

La transfección es el proceso de inserción de material genético, como el DNA y el RNA trenzado doble, en células de mamíferos. La inserción de DNA permite la expresión, o la producción de proteínas utilizando la maquinaria propia de las células. Considerando que la inserción de ARN de doble cadena se utiliza para cerrar la producción de una proteína específica deteniendo la traducción. Esta poderosa herramienta ha permitido a los investigadores estudian mejor función genética y expresión, función de la proteína y mutaciones genéticas.

No reactivo de transfección simple o método funciona para todos los tipos de la célula. Afortunadamente, muchos métodos y reactivos se han desarrollado en las últimas décadas para facilitar la transfección de una amplia variedad de células. Estos métodos se pueden dividir en dos grandes grupos: químicos y físicos transfecciones.

En este video, nos centraremos en los diferentes sistemas de administración química, como se han vuelto cada vez más común en los últimos años. Estos métodos incluyen enfoques basados en lípidos, fosfato de calcio mediada por transfección y el uso de polímeros catiónicos para nombrar unos pocos.

El principio subyacente de todos los métodos de transfección química son similares. Todos ellos hacen uso tan complejas de moléculas de portador de carga positiva con ácidos nucleicos para paquete para entrega celular. Estas moléculas de portador superan la carga negativa de la barrera de la membrana de la célula que les permite pasar a través de la membrana para ofrecer sus contenidos.

Transfección de lípidos, lípidos catiónicos forman un liposoma que luego combina con los ácidos nucleicos para formar una "complejo de transfección". Mientras que el fosfato de calcio simplemente se condensa el ADN y le da una carga positiva neta. Además, polímeros catiónicos como polyetheleneimine condensan el ADN en partículas con carga positiva.

El siguiente paso en la química de la transfección mediada es accesorio de los complejos cargados positivamente a la membrana celular cargada negativamente por simple atracción electrostática.

Entonces, el complejo entra en la célula mediante endocitosis - un proceso por el cual moléculas de entrar en la célula a través de membrana-limite las vesículas llamadas endosomas.

Una vez dentro de la célula, los ácidos nucleicos debe escapar de la endosome por un proceso que aún se desconoce. Una vez fuera el endosome, los ácidos nucleicos se encuentran en el citoplasma de la célula y en última instancia el núcleo, donde maquinaria de la célula es capaz de hacer de mRNA y proteína de él. El citoplasma es el sitio de acción de la ARN interferente pequeño o siRNA donde se reduce la producción de proteínas por interferir con una parte de la maquinaria de producción de proteína de la célula.

Puede existir DNA transfected estable o transitorio. Transfecciones estables ocurren cuando transfected ADN se introduce en el genoma y por lo tanto persiste como la célula se divide. Transfecciones transitorias ocurren donde el ADN no se incorpora en el genoma y la expresión de la proteína codificada se pierde durante un lapso de 24-96 horas.

La eficiencia de la transfección de ADN generalmente se mide a través de sistemas de reportero que están atados al gen insertado. Son sistemas que pueden ser fácilmente detectados por observar directamente la proteína reportera, como en el caso de la proteína verde fluorescente, o mediante la medición de su actividad enzimática mediante un ensayo colorimétrico, como en el caso de una enzima luciferase reportero. Transfección de ADN estable se mide mejor por análisis genómico como RT-PCR.

Para medir el éxito de siRNA silenciamiento, los niveles de proteínas específicas en cada muestra pueden determinarse por el Immunoblot. SiRNA exitosa transfección debería disminuir la expresión de la proteína diana dentro de las células mientras que los niveles del gen housekeeping, GAPDH, permanecen estables.

Para maximizar la eficiencia de transfección, las células deben mantenerse en crecimiento de la fase de registro y estar entre 40 y 80% confluente, en el momento de la transfección. Para lograr esto, las células en cultivo deben ser cosechadas el día antes... contado... y las semillas en una placa de varios pocillos en una concentración que producirá el nivel correcto de confluencey en el momento de la transfección.

A continuación, los reactivos químicos y los ácidos nucleicos se mezclan y dados tiempo para formar los complejos de ácido nucleico-reactivo. Para cada sistema químico las concentraciones específicas de cada componente deben ser optimizadas.

Los complejos de ácido nucleico-reactivo entonces se agregan a las células plateadas e incubados a menudo durante la noche para dar suficiente tiempo para los complejos unir a las células y el mediato de la transfección. Después de 24 horas, los medios de comunicación deben ser eliminado y reemplazado con medio de cultivo fresco.

Existen muchas variaciones y aplicaciones de la transfección. La transfección puede permitir que un investigador estudiar el efecto de las mutaciones sin sentido en la función de proteínas celulares. Aquí, ARNi fue transfected en las células HeLa para abajo-regulan la proteína BRCA1 endógena, que causa una reducción en el número de células positivas de GFP. Al mismo tiempo una proteína mutante de BRCA1 también era transfectada y producida por la célula. Si la proteína mutada fue completamente funcional causó una recuperación en el número de células positivas de GFP, pero si la mutación afecta negativamente la función, entonces el número de células positivas de GFP se quedó baja.

Como alternativa a los métodos de transfección química, investigador, que se muestra a continuación, utiliza una pistola de genes para disparar partículas de oro con ADN en células en cultivo. Las células que terminan con las pequeñas balas recubierta de ADN dentro de su citoplasma tienen una buena oportunidad para ser transfectadas.

Otro método alternativo para la transfección es electroporación. La electroporación es el uso de corriente eléctrica para dañar la membrana celular permitiendo que la DNA o del RNA entrar en la célula por un corto tiempo antes de que las células tengan tiempo de reparación. Aquí, se colocan electrodos de pinza alrededor de un cerebro de ratón y pulsos cortos de electricidad pasan a través del cerebro para iniciar ex-vivo de la transfección de las moléculas de ARNi inyectadas dentro de la solución azul. Los efectos de silenciamiento en la estructura de la corteza en desarrollo del gen se observa a continuación.

Sólo ha visto video de Zeus de transfección. ¡Como siempre, gracias por ver!

A subscription to JoVE is required to view this article.
You will only be able to see the first 20 seconds.

RECOMMEND JoVE

Applications