Summary

Çapraz türler Nakli Sinir Crest Göç ve Farklılaşma Analiz

Published: February 07, 2012
doi:

Summary

Bıldırcın-chick kimerik embriyo kuş nöral krest hücrelerinin göç ve nihai kaderi analiz etmek için bir yaklaşım tarif edilmiştir. Bu yöntem, aksi ayarlanmamış bir civciv embriyo içinde ayırt etmek zor göç ve farklılaşma sırasında nöral krest hücrelerinden izlemek için basit ve kolay bir tekniktir.

Abstract

Kuş embriyo yumurta içinde embriyo kolay erişim nedeniyle birçok omurgalı gelişimsel süreçleri, çalışmak için benzersiz bir platform sağlar. Bıldırcın donör doku, ovo içinde bir civciv embriyo nakli olduğu kimerik kuş embriyo, hücre popülasyonlarının, silinmez genetik etiketleme güç kuş embriyosunun tarafından sunulan manipülasyon kolaylığı ile birleştirir.

Bıldırcın civciv kimeralar, 1-3 göç eden nöral krest hücrelerinden (NCCS) izlemek için klasik bir araçtır. NCCS embriyo hücreleri gelişmekte olan nöral tüp 4 dorsal bölgede kaynaklanan geçici bir göçmen nüfus vardır. Onlar, mezenkimal geçiş için bir epitel geçmesi ve daha sonra onlar, kıkırdak 5-13, melanositlere 11,14-20, nöronlar ve glia 21-32 dahil olmak üzere çeşitli hücre tipleri ayırt embriyonun diğer bölgelerine göç. NCCS multipotent, ve kendi nihai kaderini etkiler.1) bunlar, 11,33-37 embriyo, 2-kaudal postero ekseni boyunca kaynaklı olduğu sinirsel tüp bölge), bunlar 38-44 geçirmek olarak komşu hücreler sinyalleri, ve 3) nihai microenvironment tarafından çalışmalar la 45,46 embriyo içinde hedef. Embriyo içinde nihai pozisyon ve kaderine, nöral tüp kökenli bu hücreler izleme, modelleme ve organogenez düzenleyen gelişim süreçlerine önemli ipuçları sunuyor.

, Donör nöral tüp (aşılama Homotopik) veya donör nöral tüp (heterotopik aşılama) farklı bölgelerinde tamamlayıcı bölgelerinde Nakli, 2,47 postero-kaudal eksen boyunca ön özellikli NCCS farklılıklar ortaya çıkarabilir. Bu teknik, daha fazla nöral tüp tek taraflı donör doku elde edilir bu tür tek taraflı bir bölmesi, nakli için uyarlanmış ve taraf kalıntıları ana embriyo yi soğukkanlı edilebilir2,47 içinde aynı örnek bir iç kontrol Elding. Bu, ayrıca ön sinirsel tüp 47 kapatıldı, HH10 sonra daha sonraki embriyolarda, beyin segmentlerinin transplantasyonu için adapte edilmiş olabilir.

Burada nöral tüpün ayrı bir segment türetilen göçmen NCCS izlemek için izin nöral tüp nakli yoluyla bıldırcın-chick kimeralar üretme teknikleri sunduk. ,, Bıldırcın özel QCPN antikor 48-56 donör kaynaklı hücre türlerinin özel etiketleme araştırmacı deneysel uç noktasında donör ve alıcı hücreleri ayırt etmek için izin verir. Bu teknik, ucuz, kolay, ve kader haritalama, izleme hücre soyu, ve postero-kaudal ekseni 45 boyunca desenlendirme öncesi olayların saptanmasını da dahil olmak üzere birçok uygulama vardır. , Kolaylığı, avyan embriyo için erişim,-chick bıldırcın graft teknikle dahil olmak üzere diğer manipülasyonlar ile kombine edilebilir fakat, lens Ablasyon 4 sınırlı değildir0, embriyonun gelişim programı salınımları ile NCCS özellikle göç akımlarının yanıt belirlemek için inhibitör molekülleri 57,58, veya ifade plazmidler 59-61 elektroporasyon yoluyla genetik manipülasyon, enjeksiyon. Ayrıca, bu aşılama tekniği fare genetik kuş embriyo manipülasyonu kolaylığı ile gücünü birleştirmek için, kraniyofasiyal morfonogenezi, ya da fare civciv kimeralar KKK katkısını incelemek için bıldırcın-ördek kimeralar gibi diğer arası kimerik embriyo oluşturmak için kullanılan olabilir . 62

Protocol

1. Istenen aşamada, inkübe civciv ve bıldırcın yumurtası HH9 embriyo için, tipik inkübasyon sürelerinde 38 ° C 63 29-33 saat arasında değişmektedir Herhangi bir enkaz yumurta ılık su ile yıkayın. Yatay tepside tavuk yumurtası düzenleyin. Kalem ile yukarı bakacak şekilde yan işaretleyin; bu embriyo lokalize edilecektir bölge karşılık gelecektir. Bıldırcın yumurtası künt sonuna kadar inkübe edin. Yeri 38 ° C nemlendiril…

Discussion

Postero-kaudal ekseni 21,67-69 boyunca farklı bölgelerden kaynaklanan NCCS göç belirli subpopülasyonunun izlemek için basit ve ucuz bir tekniktir host civciv embriyolarının içine bıldırcın nöral tüp grefti Burada anlatılan. Bu teknik deneysel olarak araştırmak, kuş embriyoları (memeli embriyo göre) erişim kolaylığı yararlanır ve elektroporasyon yoluyla ifade plazmidlerin doku ablasyonu, inhibitör moleküllerin enjeksiyon veya genetik manipülasyon gibi diğer teknikleri ile kombine e…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Yazarlar yazının eleştirisi Lwigale laboratuvar üyelerine teşekkür ederim. SLG, Ruth L. Kirschstein NRSA, Ulusal Göz Enstitüsü (F32 EY02167301) Kardeşliği tarafından desteklenmektedir. PYL Ulusal Göz Enstitüsü (EY018050) tarafından desteklenmektedir.

Materials

Reagent Company Catalog number
Chick eggs Various – we use Texas A&M University’s Poultry Science Department, TX.  
Quail eggs Various – we use Ozarks Egg Company, MO.  
Egg incubator (Digital Readout 1502 Sportsman Incubator w/Humidity 110-120 Volt AC) www.poultrysupply.com 1502
Dumont AA forceps, Inox Epoxy-coated Fine Science Tools 11210-10
Scotch tape Any office supply store  
Curved Iris forceps Fine Science Tools 11065-07
India ink Any art supply store  
Pen/Strep (Penicillin, Streptomycin) Solution VWR International 101447-068
Clear Packing tape Any office supply store  
Needle pulling apparatus Narashige, Japan PE-21
Pulled glass needle, made from 1.5-1.8 x 100mm borosilicate glass capillary tube Kimble chase 34500 99
Pulled glass pipette, made from 5¾” Pasteur pipette Fisher Scientific 13-678-6A
Mouth pipette apparatus (aspirator tube assembly for calibrated microcapillary pipette) Sigma-Aldrich A5177-52A
Dumont #5 forceps Fine Science Tools 11251-30
Tungsten wire, 0.1mm diameter VWR International AA10404-H2
Needle holders (Nickel-plated pin holder) Fine Science Tools 26018-17
QCPN antiserum Developmental Studies Hybridoma Bank, University of Iowa QCPN
Alexa Fluor secondary antibody (e.g., Alexa Fluor 594 goat anti-mouse IgG1) Invitrogen A21125
Ringer’s Solution (2L):
  • 14.4g NaCl
  • 0.34g CaCl2
  • 0.74g KCl
  • 0.230g Na2HPO4
  • 0.04g KH2PO4
  • ddH2O to 2L
  • Filter and autoclave
All reagents from Fisher Scientific
  • 7647-14-5
  • 10043-52-4
  • 7447-40-7
  • 7558-79-4
  • 7778-77-0

References

  1. Le Douarin, G., Renaud, D. Morphologic and physiologic study of the differentiation in vitro of quail embryo precardial mesoderm. Bull. Biol. Fr. Belg. 103 (3), 453-468 (1969).
  2. Teillet, M. A., Ziller, C., Le Douarin, N. M. Quail-chick chimeras. Methods. Mol. Biol. 461, 337-350 (2008).
  3. Le Douarin, N. A biological cell labeling technique and its use in expermental embryology. Dev. Biol. 30 (1), 217-222 (1973).
  4. Noden, D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev. Biol. 42 (1), 106-130 (1975).
  5. Johnston, M. C. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat. Rec. 156 (2), 143-155 (1966).
  6. Noden, D. M. The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev. Biol. 67 (2), 296-312 (1978).
  7. Oka, K. The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev. Biol. 303 (1), 391-404 (2007).
  8. Chai, Y. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 127 (8), 1671-1679 (2000).
  9. Lengele, B., Schowing, J., Dhem, A. Embryonic origin and fate of chondroid tissue and secondary cartilages in the avian skull. Anat. Rec. 246 (3), 377-393 (1996).
  10. Le Douarin, N. M., Ziller, C., Couly, G. F. Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev. Biol. 159 (1), 24-49 (1993).
  11. Lallier, T. E. Cell lineage and cell migration in the neural crest. Ann. N.Y. Acad. Sci. 615, 158-171 (1991).
  12. Nakamura, H. Mesenchymal derivatives from the neural crest. Arch. Histol. Jpn. 45 (2), 127-138 (1982).
  13. Le Lievre, C. S., Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34 (1), 125-154 (1975).
  14. Rawles, M. E. The Development of Melanophores from Embryonic Mouse Tissues Grown in the Coelom of Chick Embryos. Proc. Natl. Acad. Sci. U.S.A. 26 (12), 673-680 (1940).
  15. Rawles, M. E. The Pigment-Forming Potency of Early Chick Blastoderms. Proc. Natl. Acad. Sci. U.S.A. 26 (1), 86-94 (1940).
  16. Mosher, J. T. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev. Biol. 303 (1), 1-15 (2007).
  17. Dupin, E., Le Douarin, N. M. Development of melanocyte precursors from the vertebrate neural crest. Oncogene. 22 (20), 3016-3023 (2003).
  18. Faraco, C. D., Vaz, S. A., Pastor, M. V., Erickson, C. A. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev. Dyn. 220 (3), 212-225 (2001).
  19. Selleck, M. A., Bronner-Fraser, M. Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. Int. J. Dev. Neurosci. 18 (7), 621-627 (2000).
  20. Stocker, K. M., Sherman, L., Rees, S., Ciment, G. Basic FGF and TGF-beta 1 influence commitment to melanogenesis in neural crest-derived cells of avian embryos. Development. 111 (2), 635-645 (1991).
  21. Le Douarin, N. M., Teillet, M. A. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev. Biol. 41 (1), 162-184 (1974).
  22. Noden, D. M. The control of avian cephalic neural crest cytodifferentiation. II. Neural tissues. Dev. Biol. 67 (2), 313-329 (1978).
  23. Barraud, P. Neural crest origin of olfactory ensheathing glia. Proc. Natl. Acad. Sci. U.S.A. 107 (49), 21040-21045 (2010).
  24. Li, H. Y., Say, E. H., Zhou, X. F. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells. 25 (8), 2053-2065 (2007).
  25. Carney, T. J. A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development. 133 (23), 4619-4630 (2006).
  26. Maro, G. S. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7 (9), 930-938 (2004).
  27. Bronner-Fraser, M. Molecular analysis of neural crest formation. J. Physiol. Paris. 96 (1-2), 3-8 (2002).
  28. Paratore, C., Goerich, D. E., Suter, U., Wegner, M., Sommer, L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 128 (20), 3949-3961 (2001).
  29. Britsch, S. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15 (1), 66-78 (2001).
  30. Bronner-Fraser, M. Origin of the avian neural crest. Stem Cells. 13 (6), 640-646 (1995).
  31. Jessen, K. R., Mirsky, R. Neural development. Fate diverted. Curr. Biol. 4 (9), 824-827 (1994).
  32. Le Douarin, N., Dulac, C., Dupin, E., Cameron-Curry, P. Glial cell lineages in the neural crest. Glia. 4 (2), 175-184 (1991).
  33. Chan, W. Y., Cheung, C. S., Yung, K. M., Copp, A. J. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development. 131 (14), 3367-3379 (2004).
  34. Bronner-Fraser, M. Segregation of cell lineage in the neural crest. Curr. Opin. Genet. Dev. 3 (4), 641-647 (1993).
  35. Peters-vander Sanden, M. J., Luider, T. M., vander Kamp, A. W., Tibboel, D., Meijers, C. Regional differences between various axial segments of the avian neural crest regarding the formation of enteric ganglia. Differentiation. 53 (1), 17-24 (1993).
  36. Kuratani, S., Bockman, D. E. Capacity of neural crest cells from various axial levels to participate in thymic development. Cell Tissue Res. 263 (1), 99-105 (1991).
  37. Leblanc, G. G., Epstein, M. L., Bronner-Fraser, M. E. Differential development of cholinergic neurons from cranial and trunk neural crest cells in vitro. 137 (2), 318-330 (1990).
  38. Golding, J. P., Trainor, P., Krumlauf, R., Gassmann, M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat. Cell. Biol. 2 (2), 103-109 (2000).
  39. Kulesa, P. M., Bailey, C. M., Kasemeier-Kulesa, J. C., McLennan, R. Cranial neural crest migration: new rules for an old road. Dev. Biol. 344 (2), 543-554 (2009).
  40. Lwigale, P. Y., Bronner-Fraser, M. Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. Dev. Biol. 336 (2), 257-265 (2009).
  41. Killian, O. l. e. s. n. i. c. k. y., Birkholz, E. C., A, D., Artinger, K. B. A role for chemokine signaling in neural crest cell migration and craniofacial. Dev. Biol. 333 (1), 161-172 (2009).
  42. Gammill, L. S., Gonzalez, C., Bronner-Fraser, M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev. Neurobiol. 67 (1), 47-56 (2007).
  43. Osborne, N. J., Begbie, J., Chilton, J. K., Schmidt, H., Eickholt, B. J. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev. Dyn. 232 (4), 939-949 (2005).
  44. Kanzler, B., Foreman, R. K., Labosky, P. A., Mallo, M. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development. 127 (5), 1095-1104 (2000).
  45. Garcia-Lopez, R., Pombero, A., Martinez, S. Fate map of the chick embryo neural tube. Dev. Growth Differ. 51 (3), 145-165 (2009).
  46. Goldstein, A. M., Nagy, N. A bird’s eye view of enteric nervous system development: lessons from the avian embryo. Pediatr. Res. 64 (4), 326-333 (2008).
  47. Le Douarin, N., Dieterlen-Lievre, F., Creuzet, S., Teillet, M. A. Quail-chick transplantations. Methods Cell. Biol. 87, 19-58 (2008).
  48. Wingate, R. J., Lumsden, A. Persistence of rhombomeric organisation in the postsegmental hindbrain. Development. 122 (7), 2143-2152 (1996).
  49. Karagenc, L., Sandikci, M. Tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. J. Anat. 216 (1), 16-22 (2010).
  50. Teague, W. J., Jayanthi, N. V., Lear, P. V., Johnson, P. R. Foregut mesenchyme contributes cells to pancreatic acini during embryonic development in a chick-quail chimera model. Pediatr. Surg. Int. 21 (3), 138-142 (2005).
  51. Borue, X., Noden, D. M. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development. 131 (16), 3967-3980 (2004).
  52. He, L. Three different fates of cells migrating from somites into the limb bud. Anat. Embryol. (Berl). 207 (1), 29-34 (2003).
  53. Huang, R., Zhi, Q., Christ, B. The relationship between limb muscle and endothelial cells migrating from single somite. Anat. Embryol. (Berl). 206 (4), 283-289 (2003).
  54. Hidalgo-Sanchez, M., Simeone, A., Alvarado-Mallart, R. M. Fgf8 and Gbx2 induction concomitant with Otx2 repression is correlated with midbrain-hindbrain fate of caudal prosencephalon. Development. 126 (14), 3191-3203 (1999).
  55. Verberne, M. E., Gittenberger-de Groot, A. C., Poelmann, R. E. Lineage and development of the parasympathetic nervous system of the embryonic chick heart. Anat. Embryol. (Berl). 198 (3), 171-184 (1998).
  56. Burns, A. J., Douarin, N. M. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 125 (21), 4335-4347 (1998).
  57. Debby-Brafman, A., Burstyn-Cohen, T., Klar, A., Kalcheim, C. F-Spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration. Neuron. 22 (3), 475-488 (1999).
  58. Lwigale, P. Y., Bronner-Fraser, M. Lens-derived Semaphorin3A regulates sensory innervation of the cornea. Dev. Biol. 306 (2), 750-759 (2007).
  59. Nakamura, H., Funahashi, J. Introduction of DNA into chick embryos by in ovo electroporation. Methods. 24 (1), 43-48 (2001).
  60. Chen, Y. X., Krull, C. E., Reneker, L. W. Targeted gene expression in the chicken eye by in ovo electroporation. Mol. Vis. 10, 874-883 (2004).
  61. Sato, F., Nakagawa, T., Ito, M., Kitagawa, Y., Hattori, M. A. Application of RNA interference to chicken embryos using small interfering RNA. J. Exp. Zool. A. Comp. Exp. Biol. 301 (10), 820-827 (2004).
  62. Lwigale, P. Y., Schneider, R. A. Other chimeras: quail-duck and mouse-chick. Methods Cell. Biol. 87, 59-74 (2008).
  63. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn. 195 (4), 231-272 (1992).
  64. Brady, J. A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull. World Health Organ. 32 (1), 143-144 (1965).
  65. Le Douarin, N. M. A Feulgen-positive nucleolus. Exp. Cell. Res. 77 (1), 459-468 (1973).
  66. Feulgen, R., Rossenbeck, H. Mikroskopisch-chemischer Nachweis einer Nucleinsaure vom typus der Thymonucleinsiiure und die darauf beruhende elektive Faibung von Zellkemen in mikroskopischen Praparaten. Hoppe-Seyler’s Z. Physiol. Chem. 135, 203-252 (1924).
  67. Lwigale, P. Y., Conrad, G. W., Bronner-Fraser, M. Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis. Development. 131 (9), 1979-1991 (2004).
  68. Weston, J. A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 6, 279-310 (1963).
  69. Le Douarin, N. M., Kalcheim, C. . The Neural Crest. , (2009).
  70. Le Douarin, N. M., Teillet, M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 30 (1), 31-48 (1973).
  71. Douarin, N. M. L. e., Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142 (1), 17-40 (1975).
  72. Le Douarin, N. M., Renaud, D., Teillet, M. A., Le Douarin, G. H. Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations. Proc. Natl. Acad. Sci. U. S. A. 72 (2), 728-732 (1975).
  73. Houssaint, E., Belo, M., Le Douarin, N. M. Investigations on cell lineage and tissue interactions in the developing bursa of Fabricius through interspecific chimeras. Dev. Biol. 53 (2), 250-264 (1976).
  74. Le Douarin, N. M., Jotereau, F. V., Houssaint, E., Belo, M. Ontogeny of the avian thymus and bursa of Fabricius studied in interspecific chimeras. Ann. Immunol. (Paris). 127 (6), 849-856 (1976).
  75. Fontaine, J., Le Douarin, N. M. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J. Embryol. Exp. Morphol. 41, 209-222 (1977).
  76. Narayanan, C. H., Narayanan, Y. On the origin of the ciliary ganglion in birds studied by the method of interspecific transplantation of embryonic brain regions between quail and chick. J. Embryol. Exp. Morphol. 47, 137-148 (1978).
  77. Lwigale, P. Y., Cressy, P. A., Bronner-Fraser, M. Corneal keratocytes retain neural crest progenitor cell properties. Dev. Biol. 288 (1), 284-293 (2005).
  78. Lwigale, P. Y. Embryonic origin of avian corneal sensory nerves. Dev. Biol. 239 (2), 323-337 (2001).
  79. Tanaka, H., Kinutani, M., Agata, A., Takashima, Y., Obata, K. Pathfinding during spinal tract formation in the chick-quail chimera analysed by species-specific monoclonal antibodies. Development. 110 (2), 565-571 (1990).
check_url/3622?article_type=t

Play Video

Cite This Article
Griswold, S. L., Lwigale, P. Y. Analysis of Neural Crest Migration and Differentiation by Cross-species Transplantation. J. Vis. Exp. (60), e3622, doi:10.3791/3622 (2012).

View Video