Summary

एनजाइम स्थिरीकरण और स्थिरीकरण के लिए hydrophobic Nafion नमक संशोधित

Published: July 11, 2012
doi:

Summary

This article will describe the procedure for synthesizing a hydrophobically modified Nafion enzyme immobilization membrane and how to immobilize proteins and/or enzymes within the membrane and test their specific activity.

Abstract

Over the last decade, there has been a wealth of application for immobilized and stabilized enzymes including biocatalysis, biosensors, and biofuel cells.1-3 In most bioelectrochemical applications, enzymes or organelles are immobilized onto an electrode surface with the use of some type of polymer matrix. This polymer scaffold should keep the enzymes stable and allow for the facile diffusion of molecules and ions in and out of the matrix. Most polymers used for this type of immobilization are based on polyamines or polyalcohols – polymers that mimic the natural environment of the enzymes that they encapsulate and stabilize the enzyme through hydrogen or ionic bonding. Another method for stabilizing enzymes involves the use of micelles, which contain hydrophobic regions that can encapsulate and stabilize enzymes.4,5 In particular, the Minteer group has developed a micellar polymer based on commercially available Nafion.6,7 Nafion itself is a micellar polymer that allows for the channel-assisted diffusion of protons and other small cations, but the micelles and channels are extremely small and the polymer is very acidic due to sulfonic acid side chains, which is unfavorable for enzyme immobilization. However, when Nafion is mixed with an excess of hydrophobic alkyl ammonium salts such as tetrabutylammonium bromide (TBAB), the quaternary ammonium cations replace the protons and become the counter ions to the sulfonate groups on the polymer side chains (Figure 1). This results in larger micelles and channels within the polymer that allow for the diffusion of large substrates and ions that are necessary for enzymatic function such as nicotinamide adenine dinucleotide (NAD). This modified Nafion polymer has been used to immobilize many different types of enzymes as well as mitochondria for use in biosensors and biofuel cells.8-12 This paper describes a novel procedure for making this micellar polymer enzyme immobilization membrane that can stabilize enzymes. The synthesis of the micellar enzyme immobilization membrane, the procedure for immobilizing enzymes within the membrane, and the assays for studying enzymatic specific activity of the immobilized enzyme are detailed below.

Protocol

1. Nafion की चतुर्धातुक अमोनियम लवण के साथ संशोधन 5% w / v के लिए लगभग Nafion सख्ती निलंबन की एक बोतल हिला. 30 सेकंड है कि Nafion सुनिश्चित करने के समान समाधान में निलंबित कर दिया है. एक गिलास शीशी (शीशी मात्रा 2.5 मिली?…

Discussion

In the described procedure, tetra-alkyl ammonium salts are used to modify commercial Nafion to create micellar polymers that can be used to immobilize and stabilize enzymes. The assays described in the procedure show that the polymer can be used to immobilize a wide variety of enzymes with a high retention of activity. If the enzyme of interest has very low activity or is impure, a higher concentration may be required and should not affect the immobilization process, unless immobilizing enzymes in concentrations …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge the Office of Naval Research, United Soybean Board, and National Science Foundation for funding.

Materials

Name of the reagent Company Catalog number
Nafion Sigma-Aldrich 70160
Tetra alkylammonium bromide salts Sigma-Aldrich n/a
Alcohol dehydrogenase Sigma-Aldrich A3263
Nicotinamide adenine dinucleotide (NAD) Simga-Aldrich N7004
Sodium pyrophosphate Sigma-Aldrich P8010
Phenazine methosulfate (PMS) Sigma-Aldrich P9625
2,6-Dichloroindophenol (DCIP) Sigma-Aldrich D1878
Glucose oxidase Sigma-Aldrich G7141
4-Hydroxybenzoic acid Sigma-Aldrich 240141
Sodium azide Sigma-Aldrich S8032
Peroxidase Sigma-Aldrich P8375
4-aminoantipyrine Sigma-Aldrich 06800
UV/Vis Spectrophotometer Thermo Evolution 260 Bio or Spectronic Genesys 20
Vortex Genie    
Analytical balance    

References

  1. Calabrese-Barton, S., Gallaway, J., Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices Chem. Rev. 104, 4867-4886 (2004).
  2. Cracknell, J. A., Vincent, K. A., Armstrong, F. A. Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis. Chem. Rev. 108, 2439-2461 (2008).
  3. Minteer, S. D., Liaw, B. Y., Cooney, M. J. Enzyme-Based Biofuel Cells. Curr. Opin. Biotechnol. 18, 228-234 (2007).
  4. Callahan, J. W., Kosicki, G. W. The Effect of Lipid Micelles on Mitochondrial Malate Dehydrogenase. Canadian Journal of Biochemistry. 45, 839-851 (1967).
  5. Martinek, K. Modeling of the Membrane Environment of Enzymes: Superactivity of Laccase Entrapped into Surfactant Reversed Micelles in Organic Solvents. Biokhimiya. 53, 1013-1016 (1988).
  6. Moore, C. M., Akers, N. L., Hill, A. D., Johnson, Z. C., Minteer, S. D. Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion with Tetraalkylammonium Bromides. Biomacromolecules. 5, 1241-1247 (2004).
  7. Schrenk, M. J., Villigram, R. E., Torrence, N. J., Brancato, S. J., Minteer, S. D. Effects of Mixture Casting Nafion with Quaternary Ammonium Bromide Salts on the Ion-Exchange Capacity and Mass Transport in the Membranes. J. Membr. Sci. 205, 3-10 (2002).
  8. Akers, N. L., Moore, C. M., Minteer, S. D. Development of Alcohol/O2 Biofuel Cells Using Salt-Extracted Tetrabutylammonium Bromide/Nafion Membranes to Immobilize Dehydrogenase Enzymes. Electrochim. Acta. 50, 2521-2525 (2005).
  9. Sokic-Lazic, D., Minteer, S. D. Citric Acid Cycle Biomimic on a Carbon Electrode. Biosens. Bioelectron. 24, 939-944 (2008).
  10. Arechederra, R. L., Minteer, S. D. Complete Oxidation of Glycerol in an Enzymatic Biofuel Cell. Fuel Cells. 9, 63-69 (2009).
  11. Germain, M., Arechederra, R. L., Minteer, S. D. Nitroaromatic Actuation of Mitochondrial Bioelectrocatalysis for Self-Powered Explosive Sensors. J. Am. Chem. Soc. 130, 15272-15273 (2008).
  12. Addo, P. K., Arechederra, R. L., Minteer, S. D. Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based On NAD+-Dependent Enzymes. Electroanalysis. 22, 807-812 (2010).
  13. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., Klenk, D. C. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150, 76-85 (1985).
check_url/3949?article_type=t

Play Video

Cite This Article
Meredith, S., Xu, S., Meredith, M. T., Minteer, S. D. Hydrophobic Salt-modified Nafion for Enzyme Immobilization and Stabilization. J. Vis. Exp. (65), e3949, doi:10.3791/3949 (2012).

View Video