Summary

Alternative Kulturer til human pluripotent Stem Cell produksjon, vedlikehold, og Genetic Analysis

Published: July 24, 2014
doi:

Summary

Here, we present human pluripotent stem cell (hPSC) culture protocols, based on non-colony type monolayer (NCM) growth of dissociated single cells. This new method, utilizing Rho-associated kinase inhibitors or the laminin isoform 521 (LN-521), is suitable for producing large amounts of homogeneous hPSCs, genetic manipulation, and drug discovery.

Abstract

Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.

Introduction

Kapasiteten på hPSCs å skille mot multilineage voksen vev har åpnet nye veier for å behandle pasienter som lider av alvorlige sykdommer som involverer hjerte, lever, bukspyttkjertel, og nevrologiske systemer 1-4. Ulike celletyper som stammer fra hPSCs ville også gi robuste mobilplattformer for sykdom modellering, genteknologi, narkotika screening, og toksikologiske tester 1,4. Det sentrale spørsmålet som sikrer deres fremtidige kliniske og farmakologiske applikasjoner er generering av et stort antall klinisk-grade hPSCs gjennom in vitro cellekultur. Men dagens kultur-systemer er enten utilstrekkelig eller iboende variable, som involverer ulike mater og mater frie kulturer av hPSCs som kolonier 5,6.

Koloni-type vekst av hPSCs aksjer mange strukturelle trekk ved den indre cellemasse (ICM) av tidlige pattedyr embryoer. ICM er tilbøyelige til å skille ut de tre bakterie-lagi et flercellet miljøet på grunn av eksistensen av heterogene signaloverganger. Dermed er oppkjøpet av heterogenitet i tidlig embryoutvikling anses som en nødvendig prosess for differensiering, men en uønsket funksjon i hPSC kultur. Heterogenitet i hPSC kultur er ofte forårsaket av overdreven apoptotiske signaler og spontan differensiering på grunn av suboptimale vekstforhold. Således, i koloni-type kultur, de heterogene celler er ofte observert i periferien av koloniene 7,8. Det er også vist at cellene i humane embryonale stamceller (hESC) kolonier oppviser differensielle responser til signalmolekyler som BMP-4 9. Videre koloni kultur metoder produsere lave celleutbytte samt svært lav celle utvinning fra nedfrysing skyldes ukontrollerbare vekstrater og apoptotisk signalveier 6,9. I de senere årene har ulike suspensjonskulturer er utviklet for dyrking hPSCs, spesielarly for utvidelse av store mengder hPSCs i mater-og matrisefrie forhold 6,10-13. Tydeligvis, ulike kultur-systemer har sine egne fordeler og ulemper. Generelt er den heterogene karakter av hPSCs representerer en av de store ulemper i koloni-type og aggregert kultur metoder, som er suboptimal for å levere DNA-og RNA-materiale inn hPSCs for genteknologi 6..

Klart, det er en viktig grunn til å utvikle nye systemer som omgår noen svakheter i dagens kultur metoder. Funn av små molekyl-hemmere (for eksempel ROCK inhibitor Y-27632 og JAK inhibitor 1) som forbedrer encellede overlevelse bane vei for skilt-hPSC kultur 14,15. Med bruk av disse små molekylene, har vi nylig utviklet en dyrkningsmetode basert på ikke-kolonitype (NCM) vekst av dissosierte-hPSCs 9. Denne romanen kultur metoden kombinerer både encellede aging og høy tetthetplating metoder, slik at vi kan produsere store mengder homogene hPSCs etter jevn vekst sykluser uten store kromosomavvik ni. Alternativt kan NMR kultur gjennomføres med forskjellige små molekyler og definerte matriser (f.eks laminins) for å optimalisere den dyrkningsmetode for store applikasjoner. Her presenterer vi flere detaljerte protokoller basert på NCM kultur og avgrense detaljerte prosedyrer for genteknologi. For å demonstrere allsidigheten NCM protokoller, vi også testet NCM kultur med diverse ROCK hemmere og med singelen laminin isoformen 521 (dvs., LN-521).

Protocol

Encellede baserte ikke-koloni typen monolayer (NCM) kultur hPSCs. En. Forberedelser Lag 500 ml medium for kultur av mus embryonale fibroblaster (MEFs): DMEM medium supplert med 10% FBS, 2 mM L-glutamin, og 0,1 mM ikke-essensielle aminosyrer (NEAA). Isoler mus embryonale fibroblaster (MEFs) celler avledet fra CF1 belastning etter en rutine protokoll 16 og kultur MEFs på 0,1% gelatin-belagt 6-brønn cellekultur plate i DMEM medium. Alternativt kjøpe MEF aksjer…

Representative Results

En generell skjema av NCM kultur Fig. 1 representerer en typisk NCM kultur skjema som viser de dynamiske endringer av hPSCs etter høy tetthet encellede plating i nærvær av ROCK inhibitor Y-27632. Disse morfologiske endringer inkluderer inter forbindelser etter plating, cellulære klynger formasjon, og eksponentiell cellevekst etterfulgt av celle kondens (figur 1A). Et representativt forsøk indikerer WA01 (H1) hESCs, belagt som enkelt-cel…

Discussion

Det er to viktige måter til kultur hPSCs in vitro: konvensjonell koloni-type kultur (av celler på brett eller ekstracellulære matriser) og suspensjon kultur av hPSCs som tilslag uten matere seks. Begrensningene av både koloni-type og fjæring kultur metoder inkluderer akkumulert heterogenitet og arvbare epigenetiske endringer. NCM kultur, basert på både encellede aging og høy tetthet celle plating, representerer en ny kultur metode for hPSC vekst 6,18. Selv om forskjellige encellede…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health (NIH) at the National Institute of Neurological Disorders and Stroke. We would like to thank Dr. Ronald D. McKay for his discussion and comments on this project.

Materials

Countess automated cell counter   Invitrogen Inc.  C10227 Automatic cell counting
Faxitron Cabinet X-ray System Faxitron X-ray Corporation, Wheeling, IL  Model RX-650 X-ray irradiation of MEFs
MULTIWELL six-well plates  Becton Dickinson Labware 353046 Polystyrene plates 
DMEM Invitrogen Inc. 11965–092 For MEF medium
mitomycin C Roche  107 409 Mitotic inhibitor
Trypsin Invitrogen Inc. 25300-054 For MEF dissociation
DMEM/F12  Invitrogen Inc. 11330–032 For hPSC medium
Opti-MEM I Reduced Serum Medium  Invitrogen Inc. 31985-062 For hPSC transfection
Heat-inactivated FBS Invitrogen Inc. 16000–044 Component of MEF medium
Knockout Serum Replacer  Invitrogen Inc. 10828–028 KSR, Component of hPSC medium
Dulbecco’s Phosphate-Buffered Saline Invitrogen Inc. 14190-144 D-PBS, free of Ca2+/Mg2+
Non-essential amino acids  Invitrogen  11140–050 NEAA, component of hPSC medium
L-Glutamine  Invitrogen  25030–081 Component of hPSC medium
mTeSR1 & Supplements StemCell Technologies 5850 Animal protein-free
medium
TeSR2 & Supplements StemCell Technologies 5860 Xeno-free medium
β-mercaptoethanol  Sigma  7522 Component of hPSC medium

MEF (CF-1) ATCC
American Type Culture Collection (ATCC)  SCRC-1040 For feeder culture of hPSCs
hESC-qualified Matrigel BD Bioscience 354277 For feeder-free culture of hPSCs
Laminin-521 BioLamina LN521-02 Human recombinant protein
FGF-2 (recombinant FGF, basic) R&D Systems, MN 223-FB Growth factor in hPSC medium
CryoStor CA10  StemCell Technologies 7930
Accutase Innovative Cell Technologies AT-104 1X mixed enzymatic solution
JAK inhibitor I EMD4 Biosciences 420099 An inhibitor of Janus kinase
Y-27632 EMD4 Biosciences 688000 ROCK inhibitor
Y-27632 Stemgent 04-0012 ROCK inhibitor
Y-39983 Stemgent 04-0029 ROCK I inhibitor
Phenylbenzodioxane  Stemgent 04-0030 ROCK II inhibitor
Thiazovivin Stemgent 04-0017 A novel ROCK inhibitor
BD Falcon Cell Strainer  BD Bioscience 352340 40-µm cell strainer
Nalgene 5100-0001 Cryo 1°C Thermo Scientific  C6516F-1 “Mr. Frosty” Freezing Container
Lipofectamine 2000  Invitrogen Inc. 11668-027 Transfection reagents
DharmaFECT Duo  Thermo Scientific T-2010-02 Transfection reagent
Non-targeting miRIDIAN miRNA Transfection Control Thermo Scientific IP-004500-01-05 Labeled with Dy547, to monitor the delivery of microRNAs 
SMART-shRNA Thermo Scientific  To be determined Lentiviral vector
pmaxGFP amaxa Inc (Lonza) Included in every transfection kit Expression plasmid for transfection control
4-Oct Santa Cruz Biotechnology sc-5279 Mouse IgG2b, pluripotent marker
SSEA-1 Santa Cruz Biotechnology sc-21702 Mouse IgM, differentiation marker
SSEA-4 Santa Cruz Biotechnology sc-21704 Mouse IgG3, pluripotent marker
Tra-1-60 Santa Cruz Biotechnology sc-21705  Mouse IgM, pluripotent marker
Tra-1-81 Santa Cruz Biotechnology sc-21706 Mouse IgM, pluripotent marker
CK8 (C51) Santa Cruz Biotechnology sc-8020 Mouse IgG1, against cytokeratin 8
α-fetoprotein Santa Cruz Biotechnology sc-8399 AFP, mouse IgG2a
HNF-3β (P-19) Santa Cruz Biotechnology sc-9187 FOXA2, goat polyclonal antibody
Troponin T (Av-1) Thermo Scientific MS-295-P0 Mouse IgG1
Desmin  Thermo Scientific RB-9014-P1 Rabbit IgG
Anti-NANOG ReproCELL Inc, Japan RCAB0004P-F Polyclonal antibody 
Rat anti-GFAP Zymed 13-0300 Glial fibrillary acidic protein
Albumin (clone HSA1/25.1.3) Cedarlane Laboratories Ltd. ( CL2513A Mouse IgG1,
Smooth muscle actin (clone 1A4) DakoCytomation Inc IR611/IS611 Mouse IgG2a
Nestin Chemicon International MAB5326 Rabbit polyclonal antibody
TUBB3 Convance Inc MMS-435P Tuj1, mouse IgG2a
HNF4α (C11F12) Cell Signaling Technologies 3113 Rabbit monoclonal antibody
Paraformaldehyde (solution) Electron Microscopy Sciences 15710 PFA, fixative, diluted in D-PBS

References

  1. Cherry, A. B., Daley, G. Q. Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med. 64, 277-290 (2013).
  2. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  3. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  4. Burridge, P. W., et al. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10, 16-28 (2012).
  5. Mallon, B. S., et al. StemCellDB: The Human Pluripotent Stem Cell Database at the National Institutes of Health. Stem Cell Res. 10, 57-66 (2012).
  6. Chen, K. G., et al. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 14, 13-26 (2014).
  7. Bendall, S. C., et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 448, 1015-1021 (2007).
  8. Moogk, D., et al. Human ESC colony formation is dependent on interplay between self-renewing hESCs and unique precursors responsible for niche generation. Cytometry A. 77, 321-327 (2010).
  9. Chen, K. G., et al. Non-colony type monolayer culture of human embryonic stem cells. Stem Cell Res. 9, 237-248 (2012).
  10. Amit, M., et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev. 6, 248-259 (2010).
  11. Dang, S. M., et al. scalable embryonic stem cell differentiation culture. Stem Cells. 22, 275-282 (2004).
  12. Serra, M., et al. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. 30, 350-359 (2012).
  13. Steiner, D., et al. propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 28, 361-364 (2010).
  14. Watanabe, K., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25, 681-686 (2007).
  15. Androutsellis-Theotokis, A., et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 442, 823-826 (2006).
  16. Jozefczuk, J., et al. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. , (2012).
  17. Kozhich, O. A., et al. Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells. Stem Cell Rev. , (2012).
  18. Kunova, M., et al. Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl Med. 2, 246-254 (2013).
  19. Tsutsui, H., et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun. 2, 167 (2011).
  20. Amps, K., et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 29, 1132-1144 (2011).
  21. Baker, D. E., et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 25, 207-215 (2007).
  22. Lee, A. S., et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 19, 998-1004 (2013).
  23. Domogatskaya, A., et al. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells. 26, 2800-2809 (2008).
  24. Domogatskaya, A., et al. Functional diversity of laminins. Annu Rev Cell Dev Biol. 28, 523-553 (2012).
  25. Rodin, S., et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 28, 611-615 (2010).
  26. Liew, C. G., et al. Transient and stable transgene expression in human embryonic stem cells. Stem Cells. 25, 1521-1528 (2007).
  27. Braam, S. R., et al. Genetic manipulation of human embryonic stem cells in serum and feeder-free media. Methods Mol Biol. 584, 413-423 (2010).
  28. Braam, S. R., et al. Improved genetic manipulation of human embryonic stem cells. Nat Methods. 5, 389-392 (2008).

Play Video

Cite This Article
Chen, K. G., Hamilton, R. S., Robey, P. G., Mallon, B. S. Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis. J. Vis. Exp. (89), e51519, doi:10.3791/51519 (2014).

View Video