Summary

DamID-SEQ:蛋白质-DNA相互作用的全基因组映射腺嘌呤甲基化的DNA片段通过高通量测序

Published: January 27, 2016
doi:

Summary

我们描述这里的一个检测通过结合DNA腺嘌呤甲基识别(DamID),以高通量测序(DamID-SEQ)。这种改进的方法提供了更高的分辨率和更宽的动态范围,并允许在分析与其他高通量测序数据如芯片起,RNA测序一起DamID-SEQ数据

Abstract

The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq.

Introduction

脱氧核糖核酸腺嘌呤甲基识别(DamID)1,2是这样一种方法来检测体内蛋白-DNA相互作用,是一种可供选择的方法来染色质免疫沉淀(ChIP)3。它采用的是相对低的细胞的量,并且不需要化学交联蛋白与DNA或高度特异性的抗体。后者是特别有用当靶蛋白是松散或间接地与DNA相关联。 DamID已成功地用于绘制的多种蛋白质,包括核包膜蛋白4-10,相关联的染色质蛋白11-13染色质修饰酶14,转录因子和辅因子15-18和RNAi机械19的结合位点。该方法适用于多种生物,包括S.酵母 13,S。酵母 7,C。线虫 9,17,D。 5,11,18,20,A。拟南芥 21,22以及小鼠和人的细胞系6,8,10,23,24。

所述DamID测定的发展是基于在缺乏内源性腺嘌呤甲基化2的真核细胞腺嘌呤甲基化的DNA片段的特异性检测。表达的融合蛋白,包括利息 E的DNA结合蛋白的大肠杆菌DNA腺嘌呤甲基(水坝),可以甲基化腺嘌呤碱中GATC序列是在空间接近性(最显著内1 kb和多达大约5kb的)的蛋白质的基因组中的2的结合位点。修饰的DNA片段可以特异性地扩增和杂交到微阵列检测感兴趣1,25,26的蛋白质的基因组结合位点。这个原始DamID方法是由微阵列的可用性和预定探针的密度的限制。因此,我们集成了高通量测序到DamID 10和指定的方法DamID-起。读取从DamID-SEQ产生大量的短使蛋白质-DNA相互作用的全基因组的精确定位。我们发现,DamID-SEQ提供比DamID更高的分辨率和更宽的动态范围芯片用于研究基因组核纤层(NL)协会10。这种改进的方法允许基因结构 10内探测NL协会和便于与其它高通量测序数据,如芯片起和RNA-SEQ比较。

这里描述的DamID-SEQ协议最初开发用于映射基因组-NL协会10。我们通过圈养小鼠或人类核纤层蛋白B1至E.产生的融合蛋白大肠杆菌DNA甲基腺嘌呤和测试协议中3T3小鼠胚胎成纤维细胞,C2C12小鼠成肌细胞10和IMR90人胚肺成纤维细胞(数据未公布)。在这个协议中,我们开始用Constructing载体和表达坝-拴系融合蛋白由慢病毒感染的哺乳动物细胞24。接着,我们描述放大腺嘌呤甲基化的DNA片段,并准备测序文库,应该适用于其它生物体的详细方案。

Protocol

1.产生和融合蛋白和自由大坝蛋白的表达 感兴趣进入DamID载体克隆蛋白。 根据制造商的方案扩增使用所需的高保真DNA聚合酶的兴趣点(POI)的蛋白质和合适的引物的cDNA的。实验确定最佳扩增条件,以确保插入适当的放大。 运行一个琼脂糖凝胶并根据制造商的方案纯化的POI扩增的cDNA由凝胶提取试剂盒。 克隆的cDNA的POI成采用BP克隆酶II根据制造商的协议的pDON…

Representative Results

大坝-V5-LmnB1融合蛋白被确认已共定位与内源拉明乙蛋白通过免疫荧光染色( 图1)。 腺嘌呤甲基化DNA片段的成功的PCR扩增为DamID-SEQ的关键步骤。实验样品应扩增的0.2污迹- 2 kb的,而阴性对照(无DPNI,没有连接酶或不含PCR模板)应导致无或明显较少的扩增( 图2)。 <p class="jove_content" fo:keep-together.with…

Discussion

Whether Dam-tagged proteins retain the functions of endogenous proteins should be examined before a DamID-seq experiment. The subcellular localization of Dam-tagged nuclear envelope proteins should always be determined and compared with that of the endogenous proteins. For studying transcription factors, it is suggested to examine whether the Dam-fusion protein can rescue the functions of the endogenous protein in regulating gene expression. This functional test can be performed in organisms in which knockout mutants of …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Bas van Steensel for providing the DamID mammalian expression vectors. We thank Yale Center for Genome Analysis and the Genomics Core in Yale Stem Cell Center for advice on preparing NGS libraries and implementing high throughput DNA sequencing. This work was supported by the startup funding from Yale School of Medicine, a Scientist Development Grant from American Heart Association (12SDG11630031) and a Seed Grant from Connecticut Innovations, Inc. (13-SCA-YALE-15).

Materials

ViraPower Lentiviral Expression Systems Life Technologies K4950-00, K4960-00, K4970-00, K4975-00, K4980-00, K4985-00, K4990-00, K367-20, K370-20, and K371-20
Gateway BP Clonase II Enzyme Mix Life Technologies 11789-020
Gateway LR Clonase II Enzyme Mix Life Technologies 11791-020
DNeasy Blood & Tissue Kit (250) QIAGEN 69506 or 69504  
Gateway pDONR 201 Life Technologies 11798-014
293T cells American Type Culture Collection CRL-11268
Trypsin-EDTA (0.05%), phenol red Life Technologies 25300-054
DMEM, high glucose, pyruvate Life Technologies 11995-065
Fetal Bovine Serum Sigma F4135
Tris brand not critical
EDTA brand not critical
200 Proof EtOH brand not critical
Isopropanol brand not critical
Sodium Acetate brand not critical
DpnI New England Biolabs R0176 supplied with buffer
DamID adaptors "AdRt" and "AdRb" Integrated DNA Technologies sequences available in ref. 24; no phosphorylation of the 5' or 3' end to prevent self-ligation.
T4 DNA Ligase Roche Life Science 10481220001 supplied with buffer
DpnII New England Biolabs R0543 supplied with buffer
DamID PCR primer "AdR_PCR" Integrated DNA Technologies sequences available in ref. 24
Deoxynucleotide (dNTP) Solution Set New England Biolabs N0446 100 mM each of dATP, dCTP, dGTP and dTTP
Advantage 2  Polymerase Mix Clontech 639201 supplied with buffer
1Kb Plus DNA Ladder Life Technologies 10787018 1.0 µg/µl
QIAquick PCR Purification Kit QIAGEN 28104 or 28106
MinElute PCR Purification Kit QIAGEN 28004 or 28006 for an elution volume of less than 30 µl
SPRI beads / Agencourt AMPure XP Beckman Coulter A63880 apply extra mixing and more elution time if less than 40 µl elution buffer is used
Buffer EB QIAGEN 19086
NEBNext dsDNA Fragmentase New England Biolabs M0348 supplied with buffer
T4 DNA Ligase Reaction Buffer New England Biolabs B0202
T4 DNA Polymerase New England Biolabs M0203
DNA Polymerase I, Large (Klenow) Fragment New England Biolabs M0210
T4 Polynuleotide Kinase New England Biolabs M0201
Klenow Fragment (3’ -> 5’ exo-) New England Biolabs M0212 supplied with buffer
sequencing adaptors Integrated DNA Technologies sequences available in ref. 28
Quick Ligation Kit New England Biolabs M2200 used in 11.2; supplied with Quick Ligation Reaction Buffer and Quick T4 DNA Ligase
sequencing primer 1 and 2 Integrated DNA Technologies sequences available in ref. 28
KAPA HiFi PCR Kit Kapa Biosystems KK2101 or KK2102 supplied with KAPA HiFi DNA Polymerase, 5X KAPA HiFi Fidelity Buffer and 10mM dNTP mix
agarose Sigma Aldrich A4679
ethidium bromide Sigma Aldrich E1510-10ML 10 mg/ml
QIAquick Gel Extraction Kit QIAGEN 28704 or 28706
iTaq Universal SYBR Green Supermix Bio-Rad Laboratories 1725121 or 1725122
Spectrophotometer brand not critical
0.45 um PVDF Filter brand not critical
25 ml Seringe brand not critical
10 cm Tissue Culture Plates brand not critical
6-well Tissue Culture Plates brand not critical
S1000 Thermal Cycler Bio-Rad Laboratories
C1000 Touch Thermal Cycler Bio-Rad Laboratories for qPCR
Vortex Mixer brand not critical
Dry Block Heater or Thermomixer brand not critical
Microcentrifuge brand not critical
Gel electrophoresis system with power supply brand not critical
Magnet stand for purification of DNA with SPRI beads; should hold 1.5-2 ml tubes; brand not critical
UV transilluminator brand not critical
E-gel electrophoresis system Life Technologies G6400, G6500, G6512ST

References

  1. van Steensel, B., Delrow, J., & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet. 27, 304-308, (2001).
  2. van Steensel, B., & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol. 18, 424-428, (2000).
  3. Fu, A. Q., & Adryan, B. Scoring overlapping and adjacent signals from genome-wide ChIP and DamID assays. Mol Biosyst. 5, 1429-1438, (2009).
  4. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 453, 948-951, (2008).
  5. Kalverda, B., Pickersgill, H., Shloma, V. V., & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 140, 360-371, (2010).
  6. Kubben, N. et al. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma. 121, 447-464, (2012).
  7. Steglich, B., Filion, G. J., van Steensel, B., & Ekwall, K. The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus. 3, 77-87, (2012).
  8. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 208, 33-52, (2015).
  9. Gonzalez-Aguilera, C. et al. Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol. 15, R21, (2014).
  10. Wu, F., & Yao, J. Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics. 14, 591, (2013).
  11. Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell. 143, 212-224, (2010).
  12. Vogel, M. J. et al. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16, 1493-1504, (2006).
  13. Venkatasubrahmanyam, S., Hwang, W. W., Meneghini, M. D., Tong, A. H., & Madhani, H. D. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc Natl Acad Sci U S A. 104, 16609-16614, (2007).
  14. Shimbo, T. et al. MBD3 localizes at promoters, gene bodies and enhancers of active genes. PLoS Genet. 9, e1004028, (2013).
  15. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101-1114, (2003).
  16. Artegiani, B. et al. Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO J., (2014).
  17. Schuster, E. et al. DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol Syst Biol. 6, 399, (2010).
  18. Bianchi-Frias, D. et al. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. 2, E178, (2004).
  19. Woolcock, K. J., Gaidatzis, D., Punga, T., & Buhler, M. Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nat Struct Mol Biol. 18, 94-99, (2011).
  20. Luo, S. D., Shi, G. W., & Baker, B. S. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development. 138, 2761-2771, (2011).
  21. Germann, S., & Gaudin, V. Mapping in vivo protein-DNA interactions in plants by DamID, a DNA adenine methylation-based method. Methods Mol Biol. 754, 307-321, (2011).
  22. Zhang, X. et al. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol. 14, 869-871, (2007).
  23. Orian, A. Chromatin profiling, DamID and the emerging landscape of gene expression. Curr Opin Genet Dev. 16, 157-164, (2006).
  24. Vogel, M. J., Peric-Hupkes, D., & van Steensel, B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc. 2, 1467-1478, (2007).
  25. Greil, F., Moorman, C., & van Steensel, B. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342-359, (2006).
  26. de Wit, E., Greil, F., & van Steensel, B. Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265-1273, (2005).
  27. DamID mammalian vectors, <http://research.nki.nl/vansteensellab/Mammalian_plasmids.htm>, (2015).
  28. Illumina TruSeq adaptors & PCR primers, <https://ethanomics.wordpress.com/chip-seq-library-construction-using-the-illumina-truseq-adapters/>, (2015).
  29. Optimization of PCR cycles for NGS, <https://ethanomics.wordpress.com/ngs-pcr-cycle-quantitation-protocol/>, (2015).
  30. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 28, 1045-1048, (2010).
  31. Encode Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046, (2011).
  32. Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A. 108, E149-158, (2011).
  33. Hoppe, P. S., Coutu, D. L., & Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nat Cell Biol. 16, 919-927, (2014).
  34. Avital, G., Hashimshony, T., & Yanai, I. Seeing is believing: new methods for in situ single-cell transcriptomics. Genome Biol. 15, 110, (2014).
  35. Navin, N. E. Cancer genomics: one cell at a time. Genome Biol. 15, 452, (2014).
  36. Saliba, A. E., Westermann, A. J., Gorski, S. A., & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860, (2014).
  37. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502, 59-64, (2013).
  38. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell. 153, 178-192, (2013).
  39. Southall, T. D. et al. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell. 26, 101-112,  (2013).
check_url/53620?article_type=t

Play Video

Cite This Article
Wu, F., Olson, B. G., Yao, J. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments. J. Vis. Exp. (107), e53620, doi:10.3791/53620 (2016).

View Video