Summary

Direkte-strøm Stimulering og Multi-elektrode Array opptak av Seizure-lignende aktivitet i Mus Brain Slice Forberedelse

Published: June 07, 2016
doi:

Summary

Studies have shown that cathodal transcranial direct-current stimulation can produce suppressive effects on drug-resistant seizures. In this study, an in vitro experimental setup was devised in which the direct-current stimulation and multielectrode array recording of seizure-like activity were evaluated in mice brain slice preparation. The direct-current stimulation parameters were evaluated.

Abstract

Katodisk transkranial direkte strømstimulering (tDCS) induserer undertrykkende effekt på multiresistent anfall. For å utføre effektive handlinger, stimuleringsparametre (f.eks orientering, feltstyrke, og stimulering varighet) må undersøkes i mus hjernen slice forberedelser. Testing og å anordne retningen av elektroden i forhold til posisjonen av musene hjernen skive er gjennomførbare. Den nåværende metoden bevarer thalamocingulate veien for å evaluere effekten av DCS på fremre cingulate cortex krampelignende aktiviteter. Resultatene av flerkanalrekke opptakene indikerte at katodisk DCS betydelig redusert amplituden av stimulerings-fremkalte responser og varighet av 4-aminopyridin og bicuculline-induserte anfall-lignende aktivitet. Denne studien fant også at katodisk DCS-applikasjoner på 15 min forårsaket langvarig depresjon i thalamocingulate veien. Denne studien undersøker effekten av DCS på thalamocingulate synaptisk plastisitet og akutte anfall-lignende aktiviteter. Den aktuelle fremgangsmåten kan teste de optimale stimuleringsparametere inkludert orientering, feltstyrke, og stimulering varighet i en in vitro musemodell. Dessuten kan metoden evaluere effektene av DCS på kortikale krampelignende aktiviteter på både via mobil og nettverksnivå.

Introduction

Epilepsy is a common neurological disorder. Thirty percent of patients with epilepsy suffer from drug-resistant seizures1. Transcranial direct-current stimulation (tDCS) provides a noninvasive approach to control or alter network activities across large brain areas, such as seizures. Clinical studies have shown that tDCS effectively treats intractable seizures2 and can produce both short- and long-term suppressive effects on seizures3-5. However, the therapeutic mechanism of tDCS actions is still unclear. The brain slice model presented is an in vitro method to investigate how the therapeutic mechanism of tDCS actions alters the symptoms of seizure-like brain activities. Accordingly, to achieve its optimal effects, specific stimulation parameters including orientation, field strength, and stimulation duration need to be tested in an experimental model. Previous studies have shown that the orientation of the electric field is important to obtain therapeutic effects6. Thus, testing and arranging the orientation of electrodes relative to the position of the tested brain slice are feasible.

Frontal lobe epilepsy and anterior cingulate cortex (ACC) seizures are often drug-resistant7,8. Some studies have reported the application of tDCS in the cingulate cortex9-11. tDCS is shown to affect vigilance, decision making and emotion through alteration of ACC activities, and can modulate neuronal excitability and seizure activity in this brain region12. Therefore, suppressive effects of tDCS on ACC seizures might be helpful for clinical treatment and the evaluation of alternative treatments.

The present protocol describes the preparation of an electrode in the recording chamber for DCS of a brain slice and its effect on seizure-like activity recording with a multielectrode array (MEA).

Protocol

Prosedyrer som involverer dyr fag ble godkjent av Institutional Animal Care og Utnyttelse komiteen, Academia Sinica, Taipei, Taiwan. 1. Klar Experimental Solution og utstyr for Multielectrode Array Recording Fremstille kunstig cerebral spinalvæske (aCSF; 124 mM NaCl, 4,4 mM KCl, 1 mM NaH 2PO 3, 2 mM MgSO4, 2 mM CaCl2, 25 mM NaHCO3 og 10 mM glukose, gjennomboblet med 95% O2 og 5% CO 2). Bruk to …

Representative Results

Klargjøring av Thalamocingulate Slice og MEA Recording System Setup MT-ACC stykke fra mus er en spesiell skive preparat som gjør det mulig utforskning av de elektrofysiologiske egenskapene til thalamocingulate pathway. Figur 1A viser den måte på hvilken den MT-ACC skive ble fremstilt. Hjernen til mus ble raskt fjernet og oppbevares kjølig oksygenert aCSF (figur 1 A, a, b). For å avdekke …

Discussion

I foreliggende studie ble effekten av varighet og orienteringen av DCS på ACC anfalls-lignende aktivitet testes. For å oppnå stabile data i musehjernesnitt, hvordan å holde integriteten av MT-ACC vei og for å unngå skader det er viktig, spesielt trinn i hvilket to vinklede ventrale kutt og en dorsal snitt av cortex er laget. Dessuten kan tiden for å forberede hjernen skive også påvirke aktiviteten i hjernen skive, som skal være kortest mulig tid for å holde hjernen frisk og sterk. En tidligere studie viste at…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are grateful for the technical support from the Neural Circuit Electrophysiology Core at Academia Sinica. This work was supported by the National Science Council (102-2320-B-001-026-MY3 and 100-2311-B-001-003-MY3) and Neuroscience Program of Academia Sinica.

Materials

Anesthetic:
Isoflurane Halocarbon Products Corporation  NDC 12164-002-25 4%
Name Company Catalog Number Comments
aCSF (total:1L):
D(+)-Glucose MERCK 1.08337.1000 10 mM
Sodium hydrogen carbonate MERCK 1.06329.0500 25 mM
Sodium chloride MERCK 1.06404.1000 124 mM
(+)-Sodium L-ascorbate, >=98% SIGMA A4034-100G 0.15 g / 2 c.c
Magnesium sulfate, anhydrous,ReagentPlus SIGMA M7506-500G 2 mM
Calcium chloride dihydrate MERCK 1.02382.1000 2 mM
Sodium dihydrogen phosphate monohydrate MERCK 1.06346.1000 1 mM
Potassium chloride May & Baker LTD Dagenham England MS 7616 4.4 mM
Name Company Catalog Number Comments
Drugs:
(+)-Bicuculline TOCRIS 0130 5 µM in aCSF
4-Aminopyridine TOCRIS 0940 250 µM in aCSF
Name Company Catalog Number Comments
Brain slice Preparation:
Vibratome Vibratome Series 1000 Block slicing into 500 µm thick slices
Name Company Catalog Number Comments
MEA system:
Multielectrode array (MEA) probes: 6 x 10 planar MEA Multi Channel Systems 60MEA500/30iR-Ti-pr MEAS 6×10 electrode diameter, 30 µm; electrode spacing, 500 µm; impedance, 50 kΩ at 200 Hz
Multielectrode array (MEA) probes: 8 x 8 MEA  Ayanda Biosystems 60MEA200/10iR-Ti-pr MEAS 8×8 pyramidal-shaped electrode; diameter, 40 µm; tip height, 50 µm; electrode spacing, 200 µm; impedance, 1000 kΩ at 200 Hz
A 60-channel amplifier was used with a band-pass filter set between 0.1 Hz and 3 KHz at 1200X amplification Multi-Channel Systems MEA-1060-BC
MC Rack software at a 10 KHz sampling rate Multi-Channel Systems Software for data collect and recordings
control of a pulse generator Multi-Channel Systems STG 1002
slice anchor kits and hold-downs Warner Instruments SHD-26H/10; WI64-0250
Peristaltic Pump-minipuls3 Gilsom MINIPULS3 perfusion rate : 8 ml/min
Name Company Catalog Number Comments
Stimulation system:
Isolated stimulator A-M Systems Model 2100 intensity of ±350 μA , duration of 200 μs
Tungsten electrode A-M Systems 575300 placed in thalamus

References

  1. Schiller, Y., Najjar, Y. Quantifying the response to antiepileptic drugs: effect of past treatment history. Neurology. 70 (1), 54-65 (2008).
  2. Fregni, F., et al. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 47 (2), 335-342 (2006).
  3. Auvichayapat, N., et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 6 (4), 696-700 (2013).
  4. Chung, M. G., Lo, W. D. Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury. Arch Phys Med Rehabil. 96 (4 Suppl), S129-S137 (2015).
  5. Del Felice, A., Magalini, A., Masiero, S. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool. Brain Stimul. 8 (3), 567-573 (2015).
  6. Garnett, E. O., Malyutina, S., Datta, A., den Ouden, D. B. On the Use of the Terms Anodal and Cathodal in High-Definition Transcranial Direct Current Stimulation: A Technical Note. Neuromodulation. , (2015).
  7. Biraben, A., et al. Fear as the main feature of epileptic seizures. J. Neurol. Neurosurg. Psychiatry. 70 (2), 186-191 (2001).
  8. Zaatreh, M. M., et al. Frontal lobe tumoral epilepsy: clinical, neurophysiologic features and predictors of surgical outcome. Epilepsia. 43 (7), 727-733 (2002).
  9. Karim, A. A., et al. The truth about lying: inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb. Cortex. 20 (1), 205-213 (2010).
  10. Keeser, D., et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J. Neurosci. 31 (43), 15284-15293 (2011).
  11. Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S., Parasuraman, R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 85 (Pt 3), 909-917 (2014).
  12. Chang, W. P., Lu, H. C., Shyu, B. C. Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model. Exp. Neurol. 265, 180-192 (2015).
  13. Lee, C. M., Chang, W. C., Chang, K. B., Shyu, B. C. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs. Eur. J. Neurosci. 25 (9), 2847-2861 (2007).
  14. Chang, W. P., Shyu, B. C., Pandalai, S. G. Involvement of the thalamocingulate pathway in the regulation of cortical seizure activity. Recent Research Developments in Neuroscience. 4, 1-27 (2013).
  15. Brummer, S. B., Turner, M. J. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 24 (1), 59-63 (1977).
  16. Durand, D. M., Bikson, M. Suppression and control of epileptiform activity by electrical stimulation: a review. Proc. IEEE. 89 (7), 1065-1082 (2001).
  17. Fritsch, B., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 66 (2), 198-204 (2010).

Play Video

Cite This Article
Lu, H., Chang, W., Chang, W., Shyu, B. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation. J. Vis. Exp. (112), e53709, doi:10.3791/53709 (2016).

View Video