Summary

原位水中石粒子的液体扫描电镜表征

Published: September 27, 2017
doi:

Summary

本文采用原位液体扫描电子显微镜对去离子水中的石颗粒进行 real-time 成像和元素组成分析。

Abstract

原位水中石 (AlOOH) 粒子的成像和元素分析是利用系统进行液体真空界面 (chomiak-salvi) 和扫描电子显微镜 (SEM) 的分析而实现的。本文介绍了将真空相容 SAVLI 与扫描电镜相结合, 获得高真空液中颗粒的二次电子 (SE) 图像的方法和关键步骤。能量色散 x 射线光谱学 (EDX) 用于获得液体和控制样品中的颗粒元素分析, 包括只去离子水和空通道。合成的石 (AlOOH) 颗粒悬浮在液体中作为一个模型在液体 SEM 插图。结果表明, 粒子可以在 SE 模式下成像, 分辨率很好 (, 400 nm)。与 DI 水和空通道控制相比, AlOOH EDX 谱显示了铝 (Al) 的显著信号。原位液体扫描电镜是一种强有力的技术来研究液体中的微粒与许多令人兴奋的应用。本程序旨在提供技术 know-how, 以进行液体扫描电镜成像和 EDX 分析使用 chomiak-salvi 和减少潜在的陷阱时, 使用这种方法。

Introduction

扫描电子显微镜 (SEM) 被广泛应用于研究各种标本的高分辨率成像1。与 SEM 相关的能量色散 x 射线光谱 (EDX) 能够测定元素组成1。传统上, SEM 是用于成像只有干和固体样品。在过去30年中, 开发了环境扫描电镜 (镜) 分析的部分水合样品在蒸汽环境2,3,4,5。然而, 镜无法图像的湿, 完全流体样品与理想的高分辨率6。用 sem7,8对湿法样品进行了扫描电镜成像。然而, 这些细胞主要开发为生物标本和散射电子成像, 并且为应用是更容易接近的为那些设计9,10

为了解决在使用 SEM 分析其本机液态环境中的各种样品时所面临的挑战, 我们发明了一种真空兼容微流控装置, 用于在液体真空界面 (chomiak-salvi) 上进行分析, 以使高空间分辨率的次级用扫描电镜中的高真空模式对液体样品进行电子 (SE) 成像和元素分析。这项新技术包括以下独特的特点: 1) 液体在直径为 1-2 µm 的小孔径中直接探测;2) 液体通过表面张力在孔内举行;和 3) chomiak-salvi 是便携的, 可以适应多个分析平台11,12,13,1415,16,17 ,18

chomiak-salvi 由100纳米厚的氮化硅 (SiN) 膜和200µm 宽的微通道组成, 由烷 (矽) 块制成。应用原膜窗口密封微通道。在以前的论文和专利111920中详细介绍了制造细节和关键设计考虑事项。目前, 一家领先的显微镜耗材制造商和分销商已经购买了销售 chomiak-salvi 设备的许可证, 以商用的液体扫描电镜应用21,22

chomiak-salvi 在 vacuum-based 分析仪器中的应用已被证明使用各种水溶液和复杂的液体混合物, 包括生物膜, 哺乳动物细胞, 纳米粒子和电极材料12,14,17,20,23,24. 然而, 上述工作大多采用飞行时间二次离子质谱法作为关键的分析工具, 因此尚未充分探讨液体 chomiak-salvi 扫描电镜的应用. 在这项工作中, chomiak-salvi 已被用来研究更大的非胶体微粒液体利用 SEM 成像和 EDX 元素分析。样品由我们实验室合成的 AlOOH 颗粒组成。Submicrometer-sized 石颗粒是已知的高放射性废物在汉福德网站上存在。它们是缓慢的溶解, 并可能导致流变问题的废物处理。因此, 有能力在液体25中表征石粒子是很重要的。这种技术方法可用于研究石在各种物理化学条件下, 以提高对这些微粒和相关流变特性的认识。为了研究悬浮在液体中的颗粒, 利用这些粒子 step-by 了如何将 chomiak-salvi 应用到高真空扫描电镜中。文中重点介绍了 chomiak-salvi 和 sem 集成以及 sem 数据采集的关键技术要点。

该协议提供了液体样品分析使用 chomiak-salvi 和液体 sem 成像, 对于那些谁有兴趣利用这一新技术在不同应用的液体 sem 在未来的演示。

Protocol

1. 准备 AlOOH 液体样品 注意: 不要徒手触摸扫描电镜室内的标本或任何东西。在处理 chomiak-salvi 装置时, 应随时佩戴无粉手套, 并将其安装到 SEM 阶段, 以避免表面分析过程中的潜在污染. 制作 AlOOH 库存解决方案 (1 毫克/毫升) 将10毫克的 AlOOH 粉末溶解在10毫升的 DI 水中, 以使1毫克/毫升 AlOOH 库存解决方案. Ultrasonicate 5 分钟的库存解决方?…

Representative Results

介绍了用原位液体扫描电镜与 EDX 相结合的方法对颗粒进行成像和分析的结果。结果包括硒图像和 EDX 谱。SE 图像在图 1中的100,000X 和200,000X 放大级别获得。图 1a描述了 AlOOH 的 SE 图像,图 1b DI 水, 以及图 1c空通道中的孔。应用 SE 的8伏加速电压和 0.47 nA 光束电流, 得到了图像。使…

Discussion

SEM 是一种功能强大的技术在表面表征的有机和无机材料的纳米 (nm) 水平高分辨率1。例如, 它被广泛用于分析固体和干燥样品, 如地质材料26和半导体27。然而, 由于在电子显微镜1所需的高度真空环境中液体的不相容性, 它对湿和液体样品的定性有局限性。SEM 样品制备通常需要脱水或 freeze-drying 的水合标本, 特别是生物标本<sup cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢太平洋西北国家实验室 (4500亿) 核过程科学倡议 (NPSI)-实验室定向研究和发展基金 (LDRD) 的支持。Dr. Sayandev 查特吉提供了合成的石粒子。通过格雷斯威利环境分子科学实验室 (emsl-lv) 的一般用户提案提供了仪器接入。emsl-lv 是一个由生物和环境研究办公室 (BER) 在4500亿主办的国家科学用户设施。4500亿由巴特尔在合同 DE-AC05-76RL01830 下经营。

Materials

Carbon Coater Cressington 208 Carbon It is accompanied with thickness monitor MTM-10.
SEM FEI Quanta 3D FEG It provides highly resolved scanning electron microscopy and elemental analysis.
System for Analysis at the Liquid Vacuum Interface (SALVI) Pacific Northwest National Laboratory N/A SALVI is a unique, vacuum compatible microfluidic cell that enables the characterization of the liquid sample using vacuu- based scientific instrument.
PEEK Union Valco ZU1TPK The polyether ether ketone union is used for connecting the inlet and outlet of SALVI
Syringe BD 309659 1 mL
Pipette Thermo Fisher Scientific 21-377-821 Range: 100 to 1,000 mL
Pipette Tip 1 Neptune 2112.96.BS 1,000 µL
Pipette Tip 2 Rainin 17001865 20 µL
Syringe Pump Harvard Apparatus 70-2213 It is used to inject the liquid sample into the SALVI device.
pH meter Fisher Scientific/accumet 13-636-AP72 It is used for measuring the pH of AlOOH in DI water.
Barnstead Ultrapure Water System, UV/UF Thermo Scientific Barnstead Nanopure diamond D11931 It is used for producing DI water.
Centrifuge tubes Fisher scientific/Falcon 15-527-90 15 mL
Bransonic ultrasonic cleaner Sigma-Aldrich 2510 It is used to ultrasonicate the AlOOH liquid sample.
Balance Mettler Toledo 11106015 XS64
AlOOH Pacific Northwest National Laboratory N/A It is synthesized by scientists at Pacific Northwest National Laboratory.
xT microscope Control FEI Quanta 3D FEG Default microscope control software of SEM Quanta 3D FEG
EDAX Genesis software EDAX N/A The software is used for collecting the EDX elemental information of the samples.
Teflon tubing SUPELCO 58697-U It is used for introducing the sample into the microchannel and holding adequate volume of liquid.

References

  1. Goldstein, J., et al. . Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. , (1992).
  2. Donald, A. M. The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat Mater. 2 (8), 511-516 (2003).
  3. Rossi, M. P., et al. Environmental Scanning Electron Microscopy Study of Water in Carbon Nanopipes. Nano Lett. 4 (5), 989-993 (2004).
  4. Nune, S. K., et al. Anomalous water expulsion from carbon-based rods at high humidity. Nat Nano. 11 (9), 791-797 (2016).
  5. Soumya, E. A., et al. . Scanning Electron Microscopy (SEM) and Environmental SEM: Suitable Tools for Study of Adhesion Stage and Biofilm Formation. , (2012).
  6. Thiberge, S. Y., Nechushtan, A., Sprinzak, D., Moses, E. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci U S A. 101 (10), 3346-3351 (2004).
  7. Thiberge, S., et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci U S A. 101 (10), 3346-3351 (2004).
  8. Thiberge, S., Zik, O., Moses, E. An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev Sci Instrum. 75 (7), 2280-2289 (2004).
  9. Yu, X. -. Y., et al. Systems and methods for analyzing liquids under vacuum. USA patent. , (2011).
  10. Yang, L., et al. In situ SEM and ToF-SIMS analysis of IgG conjugated gold nanoparticles at aqueous surfaces. Surf Interface Anal. 46 (4), 224-228 (2014).
  11. Liu, B., et al. In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS. Lab Chip. 14 (5), 855-859 (2014).
  12. Ding, Y., et al. In situ Molecular Imaging of the Biofilm and Its Matrix. Anal Chem. 88 (22), 11244-11252 (2016).
  13. Hua, X., et al. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry. Biomicrofluidics. 9 (3), 031101 (2015).
  14. Hua, X., et al. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy. Integr Biol. 8 (5), 635-644 (2016).
  15. Hua, X., et al. In situ molecular imaging of a hydrated biofilm in a microfluidic reactor by ToF-SIMS. Analyst. 139 (7), 1609-1613 (2014).
  16. Yu, J., et al. Capturing the transient species at the electrode-electrolyte interface by in situ dynamic molecular imaging. Chem Commun. 52 (73), 10952-10955 (2016).
  17. Yang, L., et al. Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques. J Vac Sci Technol, A. 29 (6), (2011).
  18. Yang, L., et al. Probing liquid surfaces under vacuum using SEM and ToF-SIMS. Lab Chip. 11 (15), 2481-2484 (2011).
  19. Yao, J., et al. Switchable 1,8-diazabicycloundec-7-ene and 1-hexanol ionic liquid analyzed by liquid ToF-SIMS. Surf Sci Spectra. 23 (1), 9-28 (2016).
  20. Yu, J., et al. Capturing the transient species at the electrode-electrolyte interface by in situ dynamic molecular imaging. Chem Commun. 52 (73), 10952-10955 (2016).
  21. Clark, S. B., Buchanan, M., Wilmarth, B. . Basic Research Needs for Environmental Management. , (2016).
  22. Mills, O. P., Rose, W. I. Shape and surface area measurements using scanning electron microscope stereo-pair images of volcanic ash particles. Geosphere. 6, 805-811 (2010).
  23. Li, S., Jiang, F., Yin, Q., Jin, Y. Scanning electron acoustic microscopy of semiconductor materials. Solid State Commun. 99 (11), 853-857 (1996).
  24. Dohnalkova, A. C., et al. Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy. Appl Environ Microbiol. 77 (4), 1254-1262 (2011).
  25. Yu, X. -. Y., Liu, B., Yang, L. Imaging liquids using microfluidic cells. Microfluid Nanofluid. 15 (6), 725-744 (2013).
  26. Barshack, I., et al. A Novel Method for “Wet” SEM. Ultrastruct Pathol. 28 (1), 29-31 (2004).
  27. Cameron, R. E., Donald, A. M. Minizing sample evaporation in the Environmental Scanning Microscope. J Microsc. (Oxford, U. K.). 173 (3), 227-237 (1994).
  28. Danilatos, G. D. REVIEW AND OUTLINE OF ENVIRONMENTAL SEM AT PRESENT. J Microsc (Oxford, U.K.). 162 (3), 391-402 (1991).
  29. Stokes, D. J. Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Philos Trans R Soc, A. 361 (1813), 2771-2787 (2003).

Play Video

Cite This Article
Yao, J., Arey, B. W., Yang, L., Zhang, F., Komorek, R., Chun, J., Yu, X. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM. J. Vis. Exp. (127), e56058, doi:10.3791/56058 (2017).

View Video