This protocol describes in detail the generation of footprint-free induced pluripotent stem cells (iPSCs) from human pancreatic cells in feeder-free conditions, followed by editing using CRISPR/Cas9 ribonucleoproteins and characterization of the modified single-cell clones.
Embryonic and induced pluripotent stem cells can self-renew and differentiate into multiple cell types of the body. The pluripotent cells are thus coveted for research in regenerative medicine and are currently in clinical trials for eye diseases, diabetes, heart diseases, and other disorders. The potential to differentiate into specialized cell types coupled with the recent advances in genome editing technologies including the CRISPR/Cas system have provided additional opportunities for tailoring the genome of iPSC for varied applications including disease modeling, gene therapy, and biasing pathways of differentiation, to name a few. Among the available editing technologies, the CRISPR/Cas9 from Streptococcus pyogenes has emerged as a tool of choice for site-specific editing of the eukaryotic genome. The CRISPRs are easily accessible, inexpensive, and highly efficient in engineering targeted edits. The system requires a Cas9 nuclease and a guide sequence (20-mer) specific to the genomic target abutting a 3-nucleotide "NGG" protospacer-adjacent-motif (PAM) for targeting Cas9 to the desired genomic locus, alongside a universal Cas9 binding tracer RNA (together called single guide RNA or sgRNA). Here we present a step-by-step protocol for efficient generation of feeder-independent and footprint-free iPSC and describe methodologies for genome editing of iPSC using the Cas9 ribonucleoprotein (RNP) complexes. The genome editing protocol is effective and can be easily multiplexed by pre-complexing sgRNAs for more than one target with the Cas9 protein and simultaneously delivering into the cells. Finally, we describe a simplified approach for identification and characterization of iPSCs with desired edits. Taken together, the outlined strategies are expected to streamline generation and editing of iPSC for manifold applications.
The reprogramming of human somatic cells to the pluripotent state by overexpression of reprogramming factors has revolutionized stem cell research with applications in disease modeling, regenerative medicine, and drug development. Several non-viral reprogramming methods are available for delivery of reprogramming factors and generating iPSCs, but the process is labor intensive and not very efficient1. The viral methods, though efficient, are associated with problems of virus integration and tumorigenicity2,3,4. In this manuscript, we report the use of cytoplasmic Sendai virus for delivering reprogramming factors and establishing footprint-free iPSC lines that lack integration of any viral vector sequences into their genomes5. Sendai virus is an RNA virus that is diluted out of cell cytoplasm ~10 passages after infection and produces reprogramming factors in abundance, leading to rapid and efficient reprogramming6,7. The established iPSCs can then be readily transitioned to feeder-free medium to avoid the use of mouse embryonic fibroblasts (MEFs) as feeder cells8.
In this publication, in addition to outlining the Sendai virus mediated reprogramming, we also describe an improved protocol for editing iPSCs, which has the potential to supply unlimited human cells with desired genetic modifications for research. We have used CRISPR/Cas9 technology for the modification of iPSCs, which is now being used for a wide range of applications including knock-ins and knockouts, large-scale genomic deletions, pooled library screening for gene discovery, genetic engineering of numerous model organisms, and gene therapy9,10,11. This technique involves the formation of complexes of Streptococcus pyogenes-derived Cas9 nuclease and 20-mer guide RNAs that achieve target recognition via base-pairing with genomic target sequence adjacent to 3' nucleotide protospacer adjacent motif (PAM) sequence. The Cas9 nuclease induces a double stranded break ~3 nucleotides from the PAM site, which is subsequently repaired predominantly by non-homologous end joining (NHEJ) pathway leading to insertions or deletions in the open reading frame, and thereby functional knockout of genes12.
Our improved protocol includes the details for culture of human pancreatic cells, their reprogramming on mitotically inactivated mouse embryonic fibroblasts (MEFs) to achieve higher efficiency of reprogramming, subsequent adaptation to feeder-free culture on Matrigel, characterization of established iPSCs, CRISPR guided RNA design and preparation, delivery into iPSCs as RNP complexes, single cell sorting to generate clonal lines of edited iPSCs, easy screening and identification of edits, and characterization of single cell clones. Genomic deletions were efficiently generated in this study by the introduction of Cas9 protein and two CRISPR sgRNA RNP complexes to induce double stranded breaks (DSBs) and deletion of the intervening segment. This method capitalizes on the use of two guides for generating deletions in the open reading frame, high efficiency of NHEJ leading to low number of clones that need to be characterized, and easy preliminary screening of clones by the automated capillary electrophoresis unit, fragment analyzer. These effective genome editing methods to generate human stem cell-based disease models will soon become a standard and routine approach in any stem cell laboratory. Finally, precise genome editing will make it possible to go beyond stem cell disease modeling and potentially could help catalyze cell-based therapies.
1. Reprogramming Protocol
2. Genome Editing of Human iPSC Using CRISPR-Cas9
In this publication, we have followed a simple but efficient protocol for the generation of iPSC from human pancreatic cells using integration or footprint-free Sendai virus vectors. Figure 1A shows a schematic representation of this reprogramming protocol. The human pancreatic cells were purchased commercially, cultured in Prigrow III medium and transduced with Sendai virus as explained above. Transduced spindle shaped pancreatic cells did not show any morphological changes for ~5 days after Sendai virus transduction on day 0, but then become rounded with bigger nucleus and nucleoli. Some early colonies were seen after a week post-transduction but they were not picked, as in our experience, these colonies quickly dissociate and are usually the 'early partially reprogrammed cells' that do not establish robust colonies. Approximately 10-15 days post-transduction, small bright colonies were observed and were picked after growth (Figure 1B, top right). Human iPSC colonies are compact, tightly packed with clear edges (considered as 'fully reprogrammed cells') (Figure 1B, day 23 bottom middle) and 'partially reprogrammed cells' are loose with gaps in the colony (Figure 1B, day 23 bottom right). The reprogrammed pancreatic cell colonies were growing on day 18 (Figure 1B, bottom left) and were big enough to be picked manually by day 23 (Figure 1B, bottom middle). The colonies were plated on membrane-coated plates after picking to get feeder-free iPSC by day 30-40 (Figure 2A, left). Some of these 'robust' feeder-free colonies were expanded and characterized for the expression of alkaline phosphatase, pluripotency and surface markers in feeder-free conditions. All the clones tested were positive for alkaline phosphatase as they turned bright red after the assay (Figure 2A, right). The pluripotency markers OCT4, NANOG, SSEA4, TRA-1-60 and TRA-1-81 were also observed to be highly expressed in all the clones by immunostaining or FACS analysis (Figure 2B and Figure 3A).
These results demonstrate that the human iPSC colonies generated from pancreatic cells expressed pluripotency markers in feeder-free conditions. The pluripotency was also assessed by directed differentiation of human iPSC to three germ layers: ectoderm, mesoderm and endoderm. Clones on membrane potently differentiated to TUJ1-positive neurons (ectoderm), NKX2-5-positive beating cardiomyocytes (mesoderm) and SOX17-positive endodermal cells (Figure 3B).
After thorough characterization, 3-robust, feeder-free iPSC clonal lines were chosen for the genome editing studies. The two guides with BsaI cut sites at ends were designed for each gene to cut close together (i.e., n less than ~100 bp). The schematic of the protocol is shown in Figure 4. This deletion strategy used for the target genes allowed us to easily delete a portion of the first or second exon of a gene. This strategy was very efficient and we could isolate edited clones in every attempt. The guides were cloned into BsaI digested vector and in vitro transcribed as described above. We nucleofected guides (RNAs) and Cas9 protein as RNP complexes for quick and effective editing. We also sorted the cells as single cells on MEFs as recovery of cells is higher as compared to the cells sorted singly on membrane-coated plates. Genomic DNA was isolated from all clones, the target portion was amplified by PCR and resolved on fragment analyzer to screen for changes in sizes of target fragments as compared to the controls. The fragment size was compared to the ladder run with the samples to detect 'edited' clones (Figure 4, bottom). This made screening of clones easy as we could go through >90 clones in one plate and the results were obtained with the accuracy of ± 3 bp. The selected clones were then sequenced to confirm wild-type and mutated clones. Wildtype clones had no deletion or addition of bases while mutated clones had either addition or deletion in the sequence as compared to the wildtype. The clones showing deletion or addition in sequencing were expanded and cloned into pJET1.2 vector to identify monoallelic and biallelic clones by sequencing of at least 8-10 colonies per cloning. Monoallelic clones had bases deleted or added in one allele and the other was unaltered and similar to the wildtype allele. Biallelic clones had deletions in both the alleles. Roughly three hundred clones were screened for all target genes, which identified approximately 9 monoallelic deletion clones and 3 biallelic deletion clones in each case. This roughly corresponds to a 3-fold reduction in frequency of generation of biallelic clones compared to monoallelic clones. Heterogeneity within the deletion amplicons reflected imperfect and inconsistent NHEJ repair. The expression of the gene was finally confirmed by extracting RNA from target cells and by performing RT-PCR.
Figure 1: Reprogramming of human pancreatic cells to feeder-free pluripotent cells (iPSC). (A) A schematic protocol for the generation of iPSC from human pancreatic cells is shown. The pancreatic cells were grown on collagen-coated plates and then transferred to MEFs after transduction with human Sendai virus vectors. The completely-reprogrammed colonies were then transferred to hESC qualified membrane and characterized. (B) Morphological changes after Sendai virus transduction. Before the transduction, pancreatic cells show typical spindle-like morphology (top left, day 0). Small, tight colonies appear on MEFs by day 12, resembling human pluripotent cell colonies. Normally the fully reprogrammed human iPSC colonies have very clear boundaries and can be picked up by day 23-30. A dissociated colony at day 23 is shown on bottom right. All the images were captured at 100X magnification (10X objective and 10X eyepiece). Scale bar = 100 µm. Please click here to view a larger version of this figure.
Figure 2: Characterization of human iPSC. (A) A typical phase contrast image of an iPSC colony after picking and culture in feeder-free conditions (40X, 4X objective and 10X eyepiece; left) after Sendai virus reprogramming of pancreatic cells. Alkaline phosphatase stained red iPSC colony is on the right. For the alkaline phosphatase staining, the iPSC colonies were fixed and stained red after the addition of substrate solution from the kit. The images were captured at 40X. (B) Immunostaining for pluripotency markers NANOG, and OCT3/4 in feeder-free human pancreatic cell-derived iPSCs. DAPI was used to stain nucleus blue as a control. All the images were taken at 100X magnification. Scale bar = 100 µm in all images. Please click here to view a larger version of this figure.
Figure 3: Characterization of pluripotency and differentiation potential of iPSC. (A) FACS analysis of surface markers SSEA4, TRA-1-60 and TRA-1-81 in feeder-free iPSCs. The cells were dissociated to single cell suspension and stained for surface markers SSEA-4, TRA-1-60 and TRA-1-81. The purple peak contains iPSC negative (antibody control) cells and pancreatic iPSC can be visualised as the green peak. (B) Immunofluorescent imaging of germ layer marker genes. The expression of markers TUJ1 ectoderm (green), NKX2-5 mesoderm (red) and SOX17 endoderm (red) in cells after directed differentiation of pancreatic iPSC. Corresponding control nuclear stain DAPI is blue. All the images were taken at 100X magnification. Scale bars = 100 µm. Please click here to view a larger version of this figure.
Figure 4: Schematic of CRISPR/Cas9 deletion strategy. One sgRNA pair was designed (marked red) with BsaI cut sites at the end (shown as F and R) preferably targeting the first exon, annealed, cloned in BsaI digested modified vector (pCR2.1, BsaI site highlighted grey), sequenced and in vitro translated. The underlined sequence of vector shows the part deleted after BsaI digestion. The position of screening primers is indicated in blue. Cas9 and guide RNAs were nucleofected in feeder-free iPSC as a complex for genomic deletions. iPSCs were then single cell sorted on 96-well MEF plates, cultured, transferred to membrane, expanded and screened by fragment analyzer. For running the samples on the analyzer, genomic DNAs of Cas9 and guide transfected clones on membrane were extracted and passed through the gel/dye mix in the analyzer to select for potential 'edited' clones (bottom middle).The relevant ladder markers, WT and potential edited clones are marked.The expression of the gene was confirmed by extracting RNA and analyzing with Q-PCR. Please click here to view a larger version of this figure.
Reprogramming of human somatic cells to iPSCs has provided a major boost to the fields of basic biology research, personalized medicine, disease modeling, drug development and regenerative medicine16. Many current and widely used methods of human iPSC generation require the use of virus with the risk of integration into the host genome or episomal vectors with low reprogramming efficiency. Here, we present an efficient method for generating feeder-free iPSCs from human pancreatic cells with Sendai-virus, which leads to 'footprint free' and efficient reprogramming. The resulting human iPSCs are free of viral transgenes, maintain pluripotency, and avoid the use of unknown exogenous factors. The generation of iPSCs in feeder-free conditions has low reprogramming efficiency, so we reprogrammed the primary pancreatic cells on feeder cells and then moved the colonies to feeder-free membrane for expansion, culture and characterization. The fusion of these techniques provides stable, reliable and more efficient iPSC programming.
We also generated iPSCs from human fibroblasts and other primary cells with this method, which suggests that Sendai-virus can be used to reprogram wide variety of cells. Important considerations are: a need for optimal confluency of primary cells to be reprogrammed as too few or too many cells impacts reprogramming efficiency; an earlier passage of primary cells when the cells are still optimally dividing; careful titration of the viral vectors that results in minimal cell apoptosis and a high efficiency leading to easy pick up of robust colonies; verifying the loss of Sendai vector transgene expression by PCR at 10-15 passages to ensure that the iPSCs are 'footprint free'; and, strict sterile conditions for culture of iPSC on membrane.
We used a convenient and efficient method of CRISPR genome modification to edit the iPSC genome. This technique combines Cas9 protein and sgRNA, RNP complexes to recognize and cleave the complementary DNA sequences. It can be easily adapted to target a genomic sequence by simply changing the 20 bp guide RNA. Our method provides an easy protocol for efficient and reproducible editing of human iPSCs as they are more labor-intensive, difficult to transduce, and expensive to maintain than other cells. We design at least two adjacent but non-overlapping guides for each target gene so that a single set of screening primers can be used for screening the edited clones. In addition, use of two guides ~30-100 bp apart generates a large deletion, which can be easily visualized during preliminary screening and ensures depletion of protein. The guides can be tested in HEK-293 cells initially to estimate efficiencies before starting the assay in iPSC. Additionally, it is critical to establish parameters for routine transfection of reagents into iPSC. Using pMAXGFP plasmid, transfection efficiencies of >80% and gene targeting/disruption efficiencies of 3-10% in iPSCs are routinely achieved. The direct delivery of Cas9 RNP complexes into cells in our protocol provides rapid action and fast turnover and maintains high rates of targeted modification. Our approach employs single cell sorting following nucleofection of guides and Cas9 protein, overcoming a significant obstacle of gene targeting in mixed iPSC population and ensuring the clonality of the cells. This 'novel' overall approach is straightforward, easy to multiplex, takes only a few weeks and does not require any antibiotic selection. We did not observe any loss in efficiency by sequentially introducing deletions by CRISPRs into a cell line or iPSCs, although karyotype analysis needs to be performed in such cases to ensure genomic stability. The clones should also be checked for the expression of pluripotency markers. Although, not a focus of this publication, this protocol can be co-opted to induce precise genetic modification by including the repair template in the transfection cocktail17,18.
Finally, based on our experience, important considerations for iPSC editing protocol are: rational design of guides to minimize or altogether avoid off target mutations especially in the "seed region" or close to PAM motif being modified; optimizing nucleofection efficiency in the iPSCs to ensure delivery of RNPs; verifying the quality of prepared guides;titration of guide and Cas9 protein concentrations and validating their activity by in vitro biochemical cleavage assays or as described in this article in human cellssuch as HEK cells that are easier to culture and transfect; use of early passage iPSCs that are in log phase of growth and reaching ~50% confluency; careful handling of cells with gentle medium changes following single cell sorting to ensure survival of cells.
We believe that the above outlined protocol delineated in adequate detail will equip the readers with a roadmap to generating and editing iPSC in a reproducible fashion.
The authors have nothing to disclose.
Work in the lab was supported by postdoctoral fellowship grant to Dr. Anjali Nandal, and Exploratory grant from Maryland Stem Cell Research Fund to BT (TEDCO).
Sendai viral vectors – CytoTune-iPS 2.0 Kit | Invitrogen | A16517 | Thaw on ice; S No: 1 |
Trypsin EDTA | Gibco Life Tech | 25300-054 | 0.05%, 100 ml; S No: 2 |
Rock inhibitor (Y-27632) | Milipore | SCM075 | Use 10 μM; S No: 3 |
DMEM/F-12 medium | Invitrogen | 11330-032 | S No: 4 |
Serum replacement (KSR) | Gibco | 10828028 | S No: 5 |
DMEM | Invitrogen | 11960069 | 1X; S No: 6 |
Fetal bovine serum | Thermo Scientific | SH30071.03 | Aliquot; S No: 7 |
L-glutamine (Glutamax, 100X), liquid | Thermo Scientific | 35050061 | 1/100; S No: 8 |
Non-Essential Amino Acids | Gibco | 11140-050 | 1/100; S No: 9 |
2-Mercaptoethanol | Gibco | 21985023 | 55 mM, 1/1,000; S No: 10 |
Hausser Hemacytometers | Hausser Scientific | 02-671-54 | S No: 11 |
0.1% Gelatin Solution | STEMCELL Technologies | 7903 | Incubate at 37º C for 1 hour; S No: 12 |
SSEA-4 antibody | Santacruz | sc-21704 | 1/100; S No: 13 |
TRA-1-81 antibody | Cell Signaling | 4745S | 1/200; S No: 14 |
OCT4 antibody | Santa Cruz | sc-5279 | 1/1,000; S No: 15 |
Collagen I, Rat Tail | Life Technologies | A10483-01 | Keep cold; S No: 16 |
Alexa Fluor fluorescent 488/ 568 (secondary antibodies) | Invitrogen | A21202/A10042 | 1/2,000; S No: 17 |
DPBS | Hyclone | SH30028LS | 1X; S No: 18 |
100-mm tissue culture dish | Falcon | 353003 | S No: 20 |
96-well tissue culture plate | Falcon | 353078 | S No: 21 |
6-well tissue culture plate | Falcon | 353046 | S No: 22 |
Dissecting scope | Nikon | SMZ745 | S No: 23 |
Picking hood | NuAire | NU-301 | S No: 24 |
15 ml Centrifuge Tube | Greiner Bio-One | 188271 | S No: 25 |
50 ml Centrifuge Tube | Greiner Bio-One | 227261 | S No: 26 |
Sodium pyruvate | Invitrogen | 11360 | S No: 28 |
β-mercaptoethanol | Sigma | M7522 | S No: 29 |
Prigrow III medium | ABM | TM003 | S No: 31 |
Countess™ Cell Counter | Invitrogen | C10227 | S No: 32 |
Faxitron X-ray system | Faxitron | CellRad | S No: 33 |
Accutase | Innovative cell Technologies | AT-104 | S No: 34 |
Collagenase | Life Technologies | 17104019 | 1mg/ml stock; S No: 35 |
Dispase | STEMCELL Technologies | 7923 | S No: 36 |
hESC qualified matrigel | BD Biosciences | 354277 | To dilute, use cold DMEM/F-12; S No: 37 |
bFGF | R & D | 233-FB | Stock 10 ug/ml; S No: 38 |
Paraformaldehyde | EMS | 15710 | 4% stock in PBS; S No: 39 |
TRA-1-60 | Santa Cruz | sc-21705 | 1/100; S No: 40 |
NANOG | ReproCELL | RCAB0004P-F | 1/100; S No: 41 |
Tween 20 | Sigma | P9416-100ML | S No: 42 |
Alkaline Phosphatase kit | Stemgent | 00-0055 | S No: 43 |
Cas9 protein | PNA Bio | CP01-50 | Thaw and aliquot; S No: 44 |
Goat or donkey serum | Sigma | D9663/G9023 | S No: 45 |
Triton X-100 | Sigma | X100-100ML | S No: 46 |
DAPI | Thermo Scientific | D1306 | S No: 47 |
Tris | Sigma | 9285-100ML | S No: 48 |
NaCL | Sigma | S7653-250G | S No: 49 |
EDTA | Sigma | BP2482-500 | S No: 50 |
T4 DNA ligase | NEB | M0202T | S No: 51 |
Mega Shortscript T7 kit | Thermo Scientific | AM1354 | S No: 52 |
Mega Clear kit | Thermo Scientific | AM1908 | S No: 53 |
SMC4 | BD Biosciences | 354357 | S No: 54 |
Fibronectin | STEMCELL Technologies | 7159 | S No: 55 |
CloneJET cloning kit | Thermo Scientific | K1232 | S No: 56 |
Fragment analyzerTM | Advanced Analytical | S No: 57 | |
mTeSR1 medium kit | STEMCELL Technologies | 5850 | Warm to room temperature; S No: 58 |
Freezing medium mFreSR™ | STEMCELL Technologies | 5855 | S No: 59 |
Freezing medium CryoStor® | STEMCELL Technologies | 7930 | S No: 60 |
MEFs | Globalstem | GSC-6301G | S No: 61 |
L-glutamine | Invitrogen | 25030081 | S No: 62 |
Human pancreatic cells | ABM | T0159 | S No: 63 |
STEMdiff™ Neural Induction Medium | Stemcell Technologies | 5835 | S No: 64 |
RPMI | Thermofisher | 11875-093 | S No: 65 |
2% B27-insulin | Thermofisher | A1895601 | S No: 66 |
CHIR99021 | Stemcell Technologies | 72052 | S No: 67 |
IWP4 | Stemcell Technologies | 72552 | S No: 68 |
2% B27 | Thermofisher | 17504044 | S No: 69 |
MCDB 131 | Life Technologies | 10372019 | S No: 70 |
Sodium bicarbonate | Sigma-Aldrich | S8761-100ML | S No: 71 |
Glucose | Sigma-Aldrich | G8270-100G | S No: 72 |
BSA | Proliant | 68700 | S No: 73 |
GDF8 | Pepro-Tech | 120-00 | S No: 74 |
TUJ1 antibody | EMD Milipore | AB9354 | S No: 75 |
NKX2-5 antibody | Santa Cruz | Sc-14033 | S No: 76 |
SOX17 antibody | R & D systems | AF1924 | S No: 77 |
Propidium iodide | Thermo Scientific | P3566 | S No: 78 |
Amaxa 4D-nucleofector™ | Lonza | AAF-1002 | S No: 79 |
FACSAria II (cell sorter) | BD biosciences | SORP UV | S No: 80 |