In this paper, we provide a detailed protocol for exposing species in the genus Drosophila to pollutants with the goal of studying the impact of exposure on a range of phenotypic outputs at different developmental stages and for more than one generation.
Emergent properties and external factors (population-level and ecosystem-level interactions, in particular) play important roles in mediating ecologically-important endpoints, though they are rarely considered in toxicological studies. D. melanogaster is emerging as a toxicology model for the behavioral, neurological, and genetic impacts of toxicants, to name a few. More importantly, species in the genus Drosophila can be utilized as a model system for an integrative framework approach to incorporate emergent properties and answer ecologically-relevant questions in toxicology research. The aim of this paper is to provide a protocol for exposing species in the genus Drosophila to pollutants to be used as a model system for a range of phenotypic outputs and ecologically-relevant questions. More specifically, this protocol can be used to 1) link multiple biological levels of organization and understand the impact of toxicants on both individual- and population-level fitness; 2) test the impact of toxicants at different stages of developmental exposure; 3) test multigenerational and evolutionary implications of pollutants; and 4) test multiple contaminants and stressors simultaneously.
Every year, approximately 1,000 new chemicals are introduced by the chemical industry1,2; however, the environmental impacts of only a small percentage of these chemicals are tested before distribution2,3. Although large-scale catastrophes are uncommon, sublethal and chronic exposure to a large variety of pollutants are widespread in both humans and wildlife4,5. The historical focus of ecotoxicology and environmental toxicology was to test lethality, single chemical exposure, acute exposure, and the physiological effects of exposure, as a means of measuring the impact of pollutants on survival6,7,8,9,10. Although there is a shift towards ethical and non-invasive approaches to animal testing, current approaches are limiting because of the role that development, emergent properties, and external factors (such as population-level and ecosystem-level interactions) play in mediating ecologically-important endpoints8. Therefore, there is a need for methods that incorporate a more holistic approach without sacrificing wildlife and/or vertebrates in the laboratory.
Invertebrate model systems, such as Drosophila melanogaster, are an attractive alternative to address the need for a more holistic approach to toxicity testing. D. melanogaster, was originally developed as an invertebrate model system for human-related genetic research about a century ago11.D. melanogaster is now prominently used as a vertebrate model alternative for several reasons: 1) the conservation of genes and pathways between D. melanogaster and humans; 2) short generation time compared to vertebrate models; 3) inexpensive cost of maintenance; 4) ease in generating large sample sizes; and 5) plethora of phenotypic- and ecologically-relevant endpoints available for testing11,12,13,14,15,16,17.
Several laboratories11,15,16,17,18,19,20,21,22,23,24,25 are now using D. melanogaster as a vertebrate model alternative for toxicity testing to understand the impacts of pollution on humans. Local wild species of Drosophila can be utilized, as well, as toxicity models for wildlife (and humans) to answer ecologically-, behaviorally-, and evolutionarily-relevant questions at multiple biological levels of organization. Using species within the Drosophila genus as a model, several measurable endpoints are possible11,15,16,18,19,20,21,22,23,24,25. In addition, using the Drosophila model, toxicologists can: 1) ethically link effects at multiple biological levels of the organization; 2) incorporate the role of emergent factors and development; 3) study ecologically-important endpoints (in addition to medically-important endpoints); 4) test multiple stressors simultaneously; 5) and test long-term multigenerational (e.g. evolutionary and transgenerational) implications of stressors. Therefore, using Drosophila as a model system enables a multitude of approaches, not limited to studying mechanistic approaches with inbred strains of D. melanogaster in the laboratory.
In this paper, we present the methods for rearing and collecting Drosophila to answer various toxicological questions. More specifically, we describe the methodology for 1) rearing Drosophila in medium laced with one or more pollutants; 2) collecting Drosophila throughout development (e.g. wandering third-instar larvae, pupal cases, newly-eclosed adults, and mature adults); and 3) rearing Drosophila in the contaminated medium to test intergenerational and transgenerational transmission, as well as evolutionary implications of long-term toxicant exposure. Using this protocol, previous authors18,19,20,21,22,23,24,25 have reported different physiological, genetic, and behavioral effects of developmental lead (Pb2+) exposure. This protocol enables toxicologists to use a more holistic toxicological approach, which is essential to understanding how pollutants are risk factors for both humans and wildlife in an ever increasingly polluted environment.
The following protocol is an experimental protocol used to rear species in the Drosophila genus on contaminated medium when oral ingestion of a toxin is appropriate; other forms of exposure are possible using the Drosophila model11,15,16,26. The methods described in this protocol have been previously described by Hirsch et al.19 and Peterson et al.23,24,25.
1. Set Up Stock Populations of Drosophila in the Research Laboratory
Figure 1: Pictorial representation of traps and bait used to collect wild populations of Drosophila in the field. (A) Fly traps set at a local field site in Colorado. (B) A closer view of the fly traps set at this field site. Please click here to view a larger version of this figure.
2. Rear Drosophila in the Contaminated Medium
NOTE: If testing Drosophila in the laboratory for the first time or with a new contaminant(s), identify the lethal dose (see Castaneda et al.37 and Massie et al.38 for methods) and the LD50 (see Castaneda et al.37 and Akins et al.39 for methods) first. Then, run a dose-response curve to identify biologically-relevant concentrations for the desired phenotypic output; see Hirsch et al.19 and Zhou et al.40 for methods.
3. Collect Experimental Subjects at Various Developmental Stages
NOTE: Experimental subjects can be collected at any developmental stage, placed in the blind coded 15-mL conical tubes, and tested for accumulation. Methods for testing the accumulation of contaminants will depend on the contaminant being studied. For example, accumulation of PbAc can be tested using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS)42. In addition, experimental subjects can be collected at any developmental stage to be tested for a variety of phenotypic effects of contaminants. Figure 2 illustrates the Drosophila life cycle43. Figure 3 illustrates the experimental protocol for exposure and the different developmental stages for collection.
Figure 2: Conceptual overview of the life cycle of D. melanogaster (the most commonly used Drosophila model system). The stages of Drosophila life cycle are: 1) egg, 2) first-instar larva, 3) second-instar larva, 4) third-instar larva, 5) wandering third-instar larva, 6) white-eye pupa, 7) red-eye pupa, 8) newly-eclosed adult, and 9) mature adult. Please click here to view a larger version of this figure.
Figure 3: Conceptual overview of the methods for orally exposing Drosophila to contaminated medium in both the parental (F0) and subsequent generations (F1 and onward). (A) Methods for oral exposure during development in the exposed generation. (B) Methods to test the transfer of contaminants to offspring (F1 to the desired generation). This figure has been modified from Peterson et al.24 Please click here to view a larger version of this figure.
4. Rear Experimental Subjects to Test the Effects of Multigenerational or Transgenerational Exposure.
By orally exposing Drosophila to a contaminant(s) throughout development, various toxicological questions can be tested by exposing Drosophila at different levels of biological organization. This section presents representative results obtained using this protocol in previously published papers23,24. In particular, this protocol was previously used to evaluate the accumulation, elimination and sequestration of lead (Pb) within the same generation of exposure and across the first generation of offspring23; and to study the implication of accumulation on mate choice24.
Table 1 and Figure 4 show representative results obtained using this protocol to determine the accumulation and elimination of Pb in both the F0 and F1 generations.
Table 1 shows representative results indicative of the accumulation of Pb when exposed within generation (at various doses: 0, 10, 40, 50, 75, 100, 250, and 500 µM PbAc) in samples tested at multiple developmental stages (wandering third-instar larvae, pupal cases, newly-eclosed adults, and mature females and males) in Peterson et al.23 Samples were collected at various developmental stages, frozen at -20 °C, treated with nitric acid and hydrogen peroxide, and tested for Pb using ICP-MS23,42.
Dose (µM PbAc) | Larva | Pupal Cases | Newly-Eclosed Adults | Mature Adult Females | Mature Adult Males |
0 | 0.009 ± 0.001 | 0.099 ± 0.02 | 0.04 ± 0.005 | 0.069 ± 0.031 | 0.0015 ± 0.003 |
10 | 0.42 ± 0.025 | 0.46 ± 0.03 | 0.12 ± 0.009 | 0.12 ± 0.012 | 0.056 ± 0.008 |
40 | 7.5 ± 0.67 | ||||
50 | 5.2 ± 0.71 | 2.77 ± 0.30 | 1.11 ± 0.14 | ||
75 | 14 ± 1.06 | ||||
100 | 12 ± 0.95 | 4.7 ± 0.38 | 3.36 ± 0.58 | 1.20 ± 0.63 | 1.24 ± 0.46 |
250 | 89 ± 8.49 | 25.06 ± 4.72 | 5.46 ± 0.75 | ||
500 | 271 ± 41.01 | 334.30 ± 39.43 | 8.44 ± 0.84 | 46.50 ± 14.72 | 14.43 ± 1.83 |
Table 1: Mean Pb loads (ng/individual) tested in D. melanogaster during development after oral exposure to Pb from egg stage to test stage. Means (ng/fly) ± standard error of mean shown (n = 8 larva, n = 3 control-reared adults, n = 3 Pb-reared adults). Wild type D. melanogaster were reared on control or leaded medium (0, 10, 40, 50, 75, 100, 250 or 500 µM PbAc) from egg stage to various stages of development. Samples were collected and tested for Pb accumulation using ICP-MS.42 This table has been modified from Peterson et al.23
In Figure 4, the parental generation (F0) was exposed to Pb from egg stages to adulthood, mated in control medium, and the first generation of offspring (F1) were reared in control medium until adulthood24. Methods to detect Pb accumulation and elimination were similar to Peterson et al.23. Results from this experiment indicate that parental exposure is not transmitted to the first generation of adult offspring24. Therefore, using this protocol, it is possible to test adaptive responses at different evolutionary scales, as well as transgenerational effects of F0 exposure. Similar results were found in Peterson et al.23
Figure 4: Pb accumulation in D. melanogaster (A) parents (F0) and (B) unexposed offspring (F1). Bars in (A) and (B) show mean (ng/adult) ±SEM. Sample sizes shown above bars in (A) and (B). *** = p <0.001. (A) F0 adults were orally exposed to 250 µM PbAc using this protocol from egg stage to age 5 d post-eclosion and collected age 6 days post-eclosion (after 24 h depuration) to be tested for Pb accumulation using ICP-MS.42 (B) F0 adults were mated within treatment in control medium. Unexposed F1 offspring were reared in control medium from egg stage to adulthood (using this protocol) and tested for Pb accumulation using ICP-MS. In (B): "CF+CM"= F1 adults with parents reared in control medium, "CF+PbM" = F1 adults with fathers reared in leaded medium, "PbF+CM" = F1 adults with mothers reared in leaded medium, "PbF+PbM" = F1 adults with parents reared in leaded medium. This figure has been modified from Peterson et al.24 Please click here to view a larger version of this figure.
The results presented in Table 1 and Figure 4 indicate that Drosophila readily accumulates Pb at different doses, developmental stages, and evolutionary scales using this protocol. Therefore, this indicates the protocol's effectiveness in exposing D. melanogaster to an oral contaminant.
In Figure 5, the protocol described here was used by Peterson et al.24 to test the effects of developmental Pb exposure on mate preference. Experimental subjects were reared from egg stage to adulthood on control or leaded medium from egg stage to adulthood and tested for mate preference after 24 h of depuration. Peterson et al.24 found that Pb-exposed females preferentially mated with Pb-exposed males when given the option of either a control or Pb-exposed male. These results are one representative example of the implementation of the protocol to examine the phenotypic output.
Figure 5: Mate preference in males and females exposed to 250 µM PbAc from egg stage to adulthood. Bars in (A), (B), and (C) show mean percent (%) mating success (in 60 mins) ± SEM. *** = p <0.001. * = p <0.05. Experimental subjects in (A), (B), and (C) were exposed to control or leaded medium (250 µM PbAc) from egg stages to mature adulthood and tested for differences in mate choice. (A) Female preference for either control- or Pb-reared males (i.e. two-choice test). Sample sizes were: N = 126 control-reared females and 137 Pb-reared females. (B) Male preference for control- and Pb-reared females (i.e. two-choice test). Samples sizes were: N = 59 control-reared males and N = 64 Pb-reared males. (C) Mate preference in both males and females when singly paired with one partner of either exposure (i.e. no-choice tests). In (C): "CF+CM" = one control-reared female paired with one control-reared male (N = 85 pairs), "CF+PbM" = one control-reared female paired with one Pb-reared male (N = 79 pairs), "PbF+CM" = one Pb-reared female paired with one control-reared male (N = 91 pairs), "PbF+PbM" = one Pb-reared female + one Pb-reared male (N = 98 pairs). This figure has been modified from Peterson et al.24. Please click here to view a larger version of this figure.
Drosophila melanogaster has been established as a powerful model for a range of biological processes due to the extensive conservation of genes and pathways between D. melanogaster and humans13,14. For the same reasons that it's a powerful model for medical science, Drosophila has emerged as a suitable model system to study the impact of anthropogenic pollution on a range of toxicological endpoints. Several laboratories are successfully using D. melanogaster as a model system to study a range of compounds, including heavy metals11,16,18–25,37,38,39,40,44,45, ethanol46, nanoparticles26,47, pesticides48, and solvents49. Despite recent efforts to utilize Drosophila as a toxicology model, its use as a model system to answer the countless toxicological questions is still in its infancy. However, given its extensive use as a model for medically-related endpoints, as well as its use in ecologically50 and evolutionary studies17, its potential as a toxicological model system is enormous.
Here, we present methods for rearing various species within the Drosophila genus on contaminated medium to test for various toxicological endpoints. Although other forms of exposure are possible using Drosophila as a model (e.g. inhalation and dermal exposure), this protocol focuses on the oral consumption of pollutants which is necessary for contaminants that would naturally be ingested (such as through the food chain). These methods can accommodate the use of multiple Drosophila species and contaminants. Wild, genetically variable populations of Drosophila can also be collected in the field and maintained in the research laboratory. There are many options of traps and bait that can be used, depending upon the species food preferences; for field guides on field collection, see Markow and O'Grady33 and Werner and Jaenike34. In addition, the methods could be altered to determine the impact of developmental exposure at various critical developmental periods and allows for long-term multigenerational testing of contaminant exposure.
The critical steps of these methods include: (1) maintaining fly stocks in environmentally-controlled conditions, (2) avoiding overcrowding of fly populations, (3) diluting the test contaminant according to its chemical properties, and (4) choosing biologically-relevant concentrations of the test contaminant. Maintaining stocks in environmentally-regulated incubators (or a small room) ensures that additional variations in environmental conditions do not confound results. In addition, seasonal variations in behavior have been previously found51 and several Drosophila species enter diapause over the winter52. Second, larval overcrowding can have long-lasting implications for development30, adult body size30, and longevity53. In addition, dilution of the contaminant is an essential step to ensure that the contaminant is biologically available for Drosophila to accumulate the contaminant. For example, PbAc is dissolved in dH2O23,24,25, whereas other chemicals may need to be dissolved in saline water or ethanol. Choosing biologically-relevant concentrations of the contaminant can affect the direction of the results; for example, low doses of PbAc increase the mean number females mating with males (within 20 mins), whereas higher doses show significant decreases in the mean number of females mating19. To identify biologically-relevant concentrations of the test contaminant, readers should consider running preliminary studies to determine the lethal dose and LD50 to determine the appropriate doses to perform a dose-response curve. By performing a dose-response curve to test a range of concentrations on a particular endpoint, readers could pinpoint doses that are either "beneficial" or "hazardous" to individuals or populations for further testing.
This protocol provides an avenue to determine: 1) the interplay of multiple biological levels of organization on fitness and toxicological endpoints; 2) the role of developmental and emergent factors; 3) ecologically-important endpoints; 4) medically-important endpoints; 5) how multiple stressors interact to produce outcomes; and 6) the impact of long-term exposure that transcends generations. To illustrate the effectiveness of this protocol, evidence was provided indicating that individuals exposed throughout development accumulate Pb (Table 1)23,24. In addition, representative results show that this protocol can be used to test the implications of exposure on ecologically-important endpoints (e.g., the impact of developmental Pb exposure on mate choice24). In addition, others have tested the effects of contaminants on multiple biological levels of organization (including physiological18,21, genetic20,22 and phenotypic-levels19,23,24,25), medically-important endpoints18,20,21,22,23, and long-term multigenerational effects23,24,25,54. In addition, preliminary data indicate that developmental Pb exposure induces transgenerational epigenetic effects on fecundity in D. melanogaster54. An important limitation of this protocol is that the use of this protocol with Drosophila is in its infancy. Therefore, there are limited publications18,19,20,21,22,23,24,25 to address the potential of the protocol to answer additional toxicological questions, such as the role of development and emergent factors, additional ecologically-important endpoints, multiple stressors, and evolutionary implications of exposure.
Using this protocol, readers can test contaminants that are naturally ingested using biologically-relevant methods. Continuous liquid feeding, developed by Soares et al.55 is an alternative approach for oral ingestion, particularly for pesticide exposure. However, continuous liquid feeding is appropriate for adult ingestion of liquid contaminants and not applicable to contaminants where individuals may be exposed pre-eclosion. This is especially important given the potential for critical periods in development for exposure. Previous studies have shown a critical period for Pb exposure23. Therefore, Drosophila should be exposed throughout development to avoid the potential active elimination of contaminants by Drosophila prior to testing until critical periods can be determined.
In summary, we have provided a protocol to orally expose Drosophila to contaminants. Using this protocol and model system, toxicologists can shift towards ethical and non-invasive approaches to animal testing while simultaneously incorporating a more holistic approach to understanding the impact of contaminants8.
The authors have nothing to disclose.
This publication was supported by a grant from the Department of Education (PR Award #P031C160025-17, Project title: 84.031C) to the Colorado State University-Pueblo (CSU-Pueblo) Communities to Build Active STEM Engagement (C-BASE). We thank Current Zoology and Elsevier for providing the rights to use the representative results published in previous papers, as well as the editors of JoVE for providing us with the opportunity to publish this protocol. We would also like to thank the C-BASE Program, Dr. Brian Vanden Heuvel (C-BASE and Department of Biology, CSU-Pueblo), CSU-Pueblo Biology department, Thomas Graziano, Dr. Bernard Possidente (Department of Biology, Skidmore College), and Dr. Claire Varian Ramos (Department of Biology, Colorado State University-Pueblo) for their support and assistance.
Carolina Biological Instant Drosophila Medium Formula 4-24 | Carolina Biological | 173204 | |
Drosophila vials, Narrow (PS), Polystyrene, Superbulk, 1000 vials/unit | Genessee Scientific | 32-116SB | Used to store flies |
Flugs Closures for vials and bottles, Narrow plastic vials | Genessee Scientific | 49-102 | Used to store flies |
Cardboard trays, trays only, narrow | Genessee Scientific | 32-124 | Used to organize populations of flies |
Cardboard trays, dividers only, narrow | Genessee Scientific | 32-126 | Used to organize populations of flies |
Thermo Scientific Nalgene Square Wide-Mouth HDPE Bottles with Closure | Fischer Scientific | 03-312D | Useful for storage of contaminants |
Thermo Scientific Nalgene Color-Coded LDPE Wash Bottles | Fischer Scientific | 03-409-17C | Useful for storage of contaminants |
Eppendorf Repeater M4 Manual Handheld Pipette Dispenser | Fischer Scientific | 14-287-150 | Used to prepare medium |
Combitips Advanced Pipetter Tips – Standard, Eppendorf Quality Tips | Fischer Scientific | 13-683-708 | Used to prepare medium |
Flypad, Standard Size (8.1 X 11.6cm) | Genessee Scientific | 59-114 | Used to anesthetize flies |
Flystuff foot valve | Genessee Scientific | 59-121 | Used to anesthetize flies |
Tubing, green (1 continguous foot/unit) | Genessee Scientific | 59-124G | Used to anesthetize flies |
Mineral Oil, Light, White, High Purity Grade, 500 mL HDPE Bottle | VWR | 97064-130 | Used to make a morgue |
Glass Erlenmeyer Flask Set – 3 Sizes – 50, 150 and 250ml, Karter Scientific 214U2 | Walmart | Not applicable | Used to make a morgue |
BGSET5 Glass Beaker Set Of 5 | Walmart | ||
Inbred or wildtype line of Drosophila | Bloomington Drosophila Stock Center at Indiana University | https://bdsc.indiana.edu | |
Wild popultions of Drosophila | UC San Diego Drosophila Stock Center | https://stockcenter.ucsd.edu/info/welcome.php |