Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

优化离 视网膜电图的设置和条件,以研究小眼睛和大眼睛的视网膜功能

Published: June 27, 2022 doi: 10.3791/62763

Summary

对现有多电极阵列或膜片钳设备的修改使 离体 视网膜电图更广泛地使用。记录和维持离体光反应的改进方法有助于研究健康视网膜、眼病动物模型和人类供 视网膜中的感光器和ON双极细胞功能。

Abstract

视网膜神经元光反应的测量对于研究健康视网膜的生理学、确定视网膜疾病的病理变化和测试治疗干预至关重要。 离体 视网膜电图(ERG)允许通过添加特定的药理学试剂和独立于全身影响评估组织内在变化来量化孤立视网膜中单个细胞类型的贡献。视网膜光响应可以使用专门的 离体 ERG标本支架和记录装置进行测量,该装置由现有的膜片钳或微电极阵列设备修改而成。特别是,ON双极细胞以及光感受器的研究受到离 ERG中光反应的缓慢但逐渐下降的阻碍。提高灌注速度和调节灌注液温度可改善 离体 视网膜功能,并最大限度地提高响应幅度和稳定性。 离体 ERG独特地允许研究单个视网膜神经元细胞类型。此外,最大化响应幅度和稳定性的改进允许研究大型动物以及人类供体眼睛的视网膜样本中的光响应,使 离体 ERG成为用于研究视网膜功能的技术库的宝贵补充。

Introduction

视网膜电图测量视网膜功能对光的反应1.它是研究视网膜生理学和病理生理学以及衡量视网膜疾病治疗成功与否不可或缺的一部分。体内ERG被广泛用于评估完整生物体的视网膜功能,但它具有显着的局限性23。其中,体内ERG中单个视网膜细胞类型的定量分析受到阻碍,因为它记录了从所有视网膜细胞到光刺激的潜在变化的总和,因此重叠了反应4。此外,它不容易允许向视网膜添加药物,容易受到全身影响,并且信噪比相对较低。这些缺点在研究分离视网膜功能的离体ERG中被消除2,356离体ERG允许通过添加药理学抑制剂和易于评估治疗剂来记录特定视网膜细胞类型的大而稳定的反应,治疗剂可以添加到超级熔体中。同时,它消除了全身效应的影响,消除了生理噪音(例如,心跳或呼吸)。

离体 ERG中,视网膜或视网膜样品被分离并安装在标本支架35的圆顶上。标本支架被组装好,连接到灌注系统,该系统为视网膜提供加热的含氧介质,并放置在显微镜的载物台上,显微镜载物台经过修改以提供计算机控制的光刺激。为了记录光引起的响应,将样品支架连接到放大器、数字化仪和记录系统(图 1)。该技术允许通过改变光刺激的参数并添加药理学试剂来分离杆和视锥光感受器、ON双极细胞和Müller胶质细胞的反应。

现有的膜片钳或多电极阵列(MEA)设置可以转换为 记录离 体ERG,可以与市售的 离体 ERG适配器或定制的聚碳酸酯计算机数控(CNC)加工的标本支架结合使用,以测量小动物模型(如小鼠)视网膜中的光响应。这种修改增加了 离体 ERG的可及性,同时最大限度地减少了对专用设备的需求。与先前报道的经视网膜 离体 ERG方法7相比,样品支架的设计简化了安装技术并集成了电极,消除了对微电极的操作。标本支架内的灌注速率和温度是影响光感受器和ON双极细胞反应特性的重要因素。通过调整这些条件,可以在较长时间内可靠地从分离的小鼠视网膜记录离 ERG。优化的实验条件允许从较大的视网膜(包括大型动物眼睛和人类供体眼睛)的视网膜中离 ERG记录8

Subscription Required. Please recommend JoVE to your librarian.

Protocol

所有使用小鼠的实验均按照NIH实验动物护理和使用指南进行,并得到犹他大学机构动物研究委员会的批准。用于演示此视频的猪眼是从屠宰场(约翰逊维尔可持续猪资源)获得的。在脑或心脏死亡后,通过犹他州狮子会眼库、圣地亚哥眼库或生命共享从人类捐赠者那里获得眼睛,并同意用于研究用途,这些眼睛已获得 FDA、器官采购组织协会 (AOPO) 和美国眼库协会的完全认可。人类捐赠者眼睛的使用在犹他大学(IRB编号00106658)和ScrippsHealth IRB(IRB编号16-6781)具有豁免地位。

1. 建立 离体 ERG

  1. 要转换多电极阵列设置,请通过头部平台将离体ERG样品支架连接到差分放大器,差分放大器插入多电极阵列系统接口板的模拟输入。使用多电极阵列的记录软件记录和存储来自离体ERG的输入数据。将差分放大器的增益设置为100,并根据数字化仪规格增加额外的10倍电压放大。将低通滤波器设置为 100 Hz。
  2. 要转换膜片钳设置,请通过头部平台离体ERG样品支架连接到差分放大器,差分放大器连接到膜片钳放大器的头部级。使用膜片钳系统软件和数字化仪记录和存储来自离体ERG的输入数据。将差分放大器的增益设置为100,并通过膜片钳头级施加额外的10倍电压放大。将低通滤波器设置为 100 Hz。
  3. 将具有适当波长(例如,大约 530 nm 以引发杆状光感受器和 ON-双极细胞响应)的 LED 连接到显微镜。使用可触发光刺激的记录软件控制 LED。要控制光刺激,请使用由数字化仪的模拟输出控制的LED驱动器。
  4. 使用光电二极管在标本支架中视网膜的位置校准LED的光输出。如有必要,将中性密度滤光片插入光路以调暗光强度。
  5. 使用市售或定制的离 体ERG 标本支架。
    注:聚碳酸酯CNC加工图纸可应要求从作者处获得。
  6. 要制备电极,请将 Ag/AgCl 颗粒电极插入螺纹鲁尔连接器中。用热胶填充鲁尔连接器的内部,然后从非螺纹侧将 2 mm 插座插入热胶中。将 EP1 电极的银线焊接到 2 mm 插座上。将完成的电极(螺纹上的O形圈)拧入 离体ERG 样品支架的电极端口中。
    注意:电极可以长时间使用。如果颗粒表面积聚污垢和/或变暗(这可能导致高偏移电压和/或电漂移),则可以使用细砂纸对其进行“抛光”。
  7. 在实验前至少 1 天,使用环氧胶将滤纸粘在 离体 ERG 样品支架的圆顶上,确保胶水不会阻塞电极通道(视频见 3 )。

2. 动物制备

  1. 黑暗适应动物至少6小时或过夜。

3. 设备准备

  1. 用 5% 二氧化碳和 95% 氧气鼓泡的 Ames'培养基填充离 ERG 的灌注管路。将灌注管连接到带有直流电流源或加热控制器的加热元件,以加热 Ames' 培养基,使视网膜保持在大约 35-38 °C。
  2. 用电极溶液填充离体ERG样品支架的两半,用鲁尔塞密封灌注管路,连接电极,并用四个螺钉组装样品支架(视频见3)。
  3. 通过将万用表的探头插入电极,检查组装好的试样支架中电极之间的电阻和偏移电压。
    注意:如果没有堵塞,并且电极状况良好,则电阻应低于100 kΩ,失调电压应低于5 mV。
  4. 将组装好的样品支架连接到灌注管路,并放置在显微镜的载物台上,以提供闪光。确保试样支架和灌注管路不含任何气泡。

4. 组织准备

  1. 用CO2 处死动物并立即摘除眼睛,或获得大型动物或人类供体眼睛。
  2. 清洁眼球中剩余的结缔组织和眼外肌。修剪视神经。
  3. 在滤纸上,小心地沿着锯齿状肌放置一个小切口,距离小鼠眼睛的角膜缘约1毫米。将细花刀剪刀插入切口并沿着角膜缘切割,用晶状体去除眼睛的前部。
  4. 将眼罩放入装有艾姆斯培养基的盘子中。用细镊子抓住巩膜,注意不要触摸视网膜。在视网膜和巩膜之间插入静脉剪刀,并将巩膜从外围切向中央部分。注意不要触摸或损坏视网膜。
  5. 通过用vannas剪刀将切口的一侧固定在解剖盘的底部。用镊子抓住切口另一侧的巩膜。通过拉开切口两侧的巩膜来移除巩膜而不接触或损坏视网膜,以允许隔离视网膜,同时对组织的损害最小。
  6. 用晶状体从另一只眼睛上取下眼前节,并将眼罩在室温下储存在 Ames's 溶液中,该溶液中含有 5% 二氧化碳和 95% 氧气。
    注意:以这种方式存储的眼睛的功能光响应可以在几个小时内获得。
  7. 在大眼睛中,包括人类供体眼睛,清洁眼球中剩余的结缔组织并去除前段和晶状体,类似于为小鼠眼睛描述的程序。使用手术刀从角膜缘切开约 3 毫米。将弯曲的解剖剪刀插入切口并沿着角膜缘切割,用晶状体去除眼睛的前部。用 3-6 mm 一次性活检打孔获取视网膜样本进行 离体 视网膜电图。

5. 将组织安装在标本支架上

  1. 将标本支架的下半部分放入一个大的培养皿中,并填充含氧的埃姆斯培养基,使标本支架的圆顶刚好被淹没。
  2. 用细镊子小心地抓住视网膜的边缘,并将视网膜转移到 离体 标本支架的圆顶上,感光器面朝上。
  3. 从艾姆斯溶液中提起标本支架,注意视网膜保持在原位。
  4. 完全干燥试样支架的板,以最大程度地减少噪声、电串扰和信号分流。
  5. 用四个螺钉组装试样支架的两半并连接灌注管路。干燥样品支架下半部分的电极,并将阳极电缆连接到视网膜内侧,将阴极电缆连接到感光器侧。
  6. 用至少 1 mL/min 的含氧 Ames'培养基灌注标本支架 10-20 分钟,以便有时间稳定光反应。

6.记录视网膜神经元细胞功能

  1. 通过将视网膜暴露在强度不断增加的闪光下来记录反应家族。例如,记录光强度范围约为 10 至 1,000 光子/μm 2 的小鼠杆光感受器响应家族和来自光强度范围约为 0.6 至 20 光子/μm2 的小鼠 ON-双极细胞的光感受器响应家族。
  2. 在存在 100 μM 氯化钡(阻断 Müller 神经胶质细胞中的钾通道)和 40 μM DL-AP4(阻断谷氨酸能信号传输到 ON-双极细胞)的情况下测量光感受器光响应(a 波)(图 2B)。
  3. 为了分离源自ON双极细胞功能的b波,首先在单独存在氯化钡的情况下记录来自光感受器和ON双极细胞的组合光响应(图2A)。然后,用含有氯化钡和DL-AP4的Ames培养基灌注5-10分钟,并记录对与以前相同的光刺激的光感受器反应(图2B)。从组合的光感受器和ON双极细胞反应中减去光感受器反应,从而单独计算ON双极细胞光反应(图2C)。

7. 优化ON双极电池功能

注意:源自ON双极细胞的b波对样品支架中的温度和灌注速率高度敏感。

  1. 保持至少 0.5 mL/min 的灌注速率以获得 b 波。
    注意:优选1-2mL / min的较高灌注速率,以保持ON双极细胞的大而稳定的响应。
  2. 确保对于给定的灌注速率,视网膜附近的标本支架中的温度接近体温(即,大约35-38°C)。
    注意:重要的是调整灌注液的温度,灌注液在到达 离体 ERG标本支架之前被加热,使其在视网膜的最佳温度范围内。
  3. 将眼罩存放在避光下进行以后的实验中,并在室温下在含氧的 Ames'培养基中保持正常的 A 波和 B 波数小时。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

离体ERG能够记录可重复和稳定的光感受器和ON双极细胞光反应,例如,来自小鼠视网膜(图2A-C)。记录来自人类供体视网膜的光感受器反应是可能的,死后剜除延迟长达5小时(图2D)和ON-bipolar细胞反应具有<20分钟剜除延迟(图2E)。获得大反应的重要参数包括仔细的解剖技术、高灌注速率和接近生理值(哺乳动物视网膜为 35-38 °C)的灌注温度。在这些条件下,两种细胞类型的响应幅度和动力学随着时间的推移相对稳定,但在将视网膜安装在标本支架上后约40-45分钟缓慢下降(图3)。

与光感受器相比,ON-bipolar细胞功能更容易被破坏,例如,在解剖和安装过程中视网膜受损或温度和/或灌注速度下降。虽然样品支架中的温度降低大大降低了感光器和ON双极细胞的动力学,但它降低了b波的振幅,但没有降低a波的振幅(图4A)。相反,将灌注速率从2.1mL / min减慢到0.6 mL / min降低了光感受器和ON双极细胞反应的振幅,但不影响a波或b波的隐含时间(从刺激开始到反应峰值的时间)(图4B)。停止灌注10分钟,然后再灌注导致ON双极细胞功能完全丧失,光感受器反应保留(图5)。

Figure 1
图 1:离体视网膜电标本支架和记录设置。 (A,B离体ERG标本支架包括一个用于安装隔离视网膜的圆顶,该圆顶连接到灌注管线以连续输送Ames的培养基。电极通过狭窄的通道通过灌注线连接到视网膜的感光器侧,并通过粘在圆顶上的滤纸连接到视网膜内部。这些电极连接到差分放大器,可以测量视网膜响应光刺激的电位差。(C)将标本支架放置在显微镜的载物台上,显微镜载物台经过修改以提供闪光并连接到灌注管路,灌注管路通过重力提供加热的含氧艾姆斯介质。整个录音设置由法拉第笼屏蔽,以尽量减少电噪声。这个数字是从9修改的。缩写:ERG = 视网膜电图。请点击此处查看此图的大图。

Figure 2
图2离体光感受器和ON双极细胞反应的示例迹线。在灌注物中添加药理学试剂可以量化单个视网膜细胞类型对离体视网膜电图的贡献。在存在100μM氯化钡(BaCl2)和40μM DL-AP4(谷氨酸受体阻断剂)的情况下分离光感受器(PR)光响应,氯化钡是Müller神经胶质细胞表达的K +通道阻断剂,可抑制信号从光感受器传递到ON双极细胞(B)。ON-双极细胞 (ON-BPC) 功能 (C) 是通过在单独存在氯化钡 (A) 的情况下从组合光感受器和 ON-双极细胞反应中减去光感受器成分 (B) 来确定的。可以从人类供体视网膜获得感光器光反应,死亡对剜除延迟为<5小时(D),而在死亡后20分钟内摘除的视网膜也经常产生ON双极细胞反应(E)(更多信息见8)。图2A-C修改自9。缩写:PR = 感光器;ON-BPC = ON-双极电池。请点击此处查看此图的大图。

Figure 3
图 3:体 视网膜电图中光感受器和 ON-双极细胞功能随时间变化的稳定性 。 (A)在100μM氯化钡和40μM DL-AP4存在下,每分钟仅记录光感受器的光反应。(B)单独存在100μM氯化钡的暗光闪光主要由ON双极细胞功能主导,尽管它们含有少量的感光器成分。来自分离视网膜的光反应通常在灌注 离体 标本支架15-20分钟后稳定,并且在开始下降之前稳定至少20-25分钟。 请点击此处查看此图的大图。

Figure 4
图4:不同温度和灌注速度下的联合光感受器和ON双极细胞反应 。 (A)将样品支架内的温度从37°C降低到室温大大减慢了光感受器和ON双极细胞动力学,但仅降低了混合光感受器和ON双极细胞反应中的ON双极细胞振幅。(B)灌注速率从2.1mL / min降低到0.6 mL / min导致光感受器和ON双极细胞振幅降低,但反应动力学没有变化。 请点击此处查看此图的大图。

Figure 5
图 5:ON-双极细胞反应对停止灌注更敏感。 (A)灌注后以2.1mL / min的速度记录大感光细胞和ON双极细胞反应,持续20分钟。 (B)停止灌注10分钟后,以2.1mL / min再灌注10分钟,存在感光器反应,而ON双极细胞反应完全丧失。请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

最初由Holmgren于1865年开发,用于测量两栖动物视网膜10的视网膜光响应,技术限制最初阻止了ERG的广泛使用。尽管如此,Ragnar Granit和其他人的开创性研究确定了ERG的细胞起源,并测量了体光感受器和ON双极细胞反应111213从那时起,改进的方法允许更广泛地使用离体ERG记录14,15尽管反应幅度,特别是来自ON双极细胞的反应幅度仍然相对较小16。为了克服这些限制,视网膜功能今天更常用体内ERG测量,尽管实验限制和对记录波形的解释更为复杂。尽管离体ERG试图尽可能接近地复制生理条件,但它仍然在人工环境中测量视网膜功能,并且没有系统因素和病理变化。然而,当与体内ERG结合使用时,这种限制可用于回答重要问题,例如疾病中视网膜功能的变化是视网膜细胞固有的还是由全身变化引起的17

最近,新设计的体ERG标本支架简化了方法,使离体ERG可供更广泛的研究界使用23518对本协议中描述的现有膜片钳或多电极阵列设备的修改将使更多的实验室能够以最小的财务投资和空间要求进行离体ERG。特别是,离体ERG技术的最新发展放大了哺乳动物分离视网膜的反应性,并产生了优越的信噪比,尽管该协议中描述了额外的扩增步骤,但信噪比仍然很好。然而,主要来自ON双极细胞19的光响应的下降可能阻碍了离体ERG的更广泛使用。使用Ames或Locke培养基会导致更大的光感受器和ON双极细胞反应,使它们优于例如用于离体ERG3的HEPES缓冲林格溶液。其他实验室通过补充谷氨酰胺或谷氨酸19来稳定离体ON双极细胞功能。本报告展示了如何从孤立的视网膜(包括人类供体眼睛)获得大而稳定的光响应,如之前报道的那样8。

重要的实验参数包括视网膜的温度(应保持在生理范围内)和快速灌注速率。降低 离体 ERG标本支架温度的最显着影响是光感受器和ON双极细胞的响应动力学较慢以及ON双极细胞振幅减弱。尽管降低温度似乎对光感受器和ON双极细胞联合反应中的感光器振幅几乎没有影响,但由于两种细胞类型的反应动力学变化不同,这可能是伪影。

足够的灌注速率似乎对视网膜功能特别重要,最有可能提供氧气和营养并清除废物。虽然光感受器和ON双极细胞振幅都因灌注速率的适度降低而有所降低,但即使短暂停止灌注也消除了ON双极但不是光感受器功能。这意味着光感受器反应更强烈,并且可能更容易保存在经过明显延迟实验的眼睛中,例如人类供体眼睛8。在这种情况下,值得注意的是,ON-双极细胞功能不会因将眼罩存放在含氧的 Ames'培养基中数小时而降低。因此,我们假设当 离体 标本支架中的灌注停止时,ON-双极细胞功能的丧失可能是由于标本支架中视网膜周围小体积中的氧气和其他营养物质的快速消耗。有报道称,从死亡到眼球摘除的短暂延迟对于记录来自人类视网膜的光感受器,特别是ON双极细胞反应至关重要,并且死后缺氧是视网膜神经元功能不可逆转损害的最可能的候选者8。虽然离体ERG的实验参数在小鼠视网膜中进行了优化,但它们仍然成功地改善了大型动物和人类供 眼睛的视网膜标本的记录条件。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者均无任何利益冲突需要披露。

Acknowledgments

这项工作得到了国家眼科研究所对Vinberg博士的资助EY02665和EY031706以及国际视网膜研究基金会的支持,美国国立卫生研究院核心资助(EY014800),以及纽约州纽约州纽约州预防失明研究对犹他大学眼科与视觉科学系的无限制资助。Frans Vinberg博士还是预防失明研究/H. James博士和Carole Free职业发展奖的获得者,以及ARVO EyeFind资助的Silke Becker博士。我们感谢斯克里普斯研究所的Anne Hanneken博士提供用于图2E所示记录的供体眼睛。

Materials

Name Company Catalog Number Comments
2 mm socket WPI 2026-10 materials to prepare electrode
Ag/AgCl Electrode World Precision Instruments EP1 materials to prepare electrode
Ames' medium Sigma Aldrich A1420 perfusion media
barium chloride Sigma Aldrich B0750 potassium channel blocker
DL-AP4 Tocris 0101 broad spectrum glutamatergic antagonist
OcuScience Ex Vivo ERG Adapter OcuScience n/a ex vivo ERG specimen holder
Threaded luer connector McMaster-Carr 51525K222 or 51525K223 materials to prepare electrode

DOWNLOAD MATERIALS LIST

References

  1. Kolb, H., Fernandez, E., Nelson, R. Webvision: The Organization of the Retina and Visual System. , (1995).
  2. Bonezzi, P. J., Tarchick, M. J., Renna, J. M. Ex vivo electroretinograms made easy: performing ERGs using 3D printed components. Journal of Physiology. 598 (21), 4821-4842 (2020).
  3. Vinberg, F., Kefalov, V. Simultaneous ex vivo functional testing of two retinas by in vivo electroretinogram system. Journal of Visualized Experiments. (99), e52855 (2015).
  4. Heckenlively, J. R., Arden, G. B. Principles and Practice of Clinical Electrophysiology of Vision. , MIT Press. (2006).
  5. Vinberg, F., Kolesnikov, A. V., Kefalov, V. J. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Research. 101, 108-117 (2014).
  6. Winkler, B. S. Calcium and the fast and slow components of P3 of the electroretinogram of the isolated rat retina. Vision Research. 14 (1), 9-15 (1974).
  7. Green, D. G., Kapousta-Bruneau, N. V. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Visual Neuroscience. 16 (4), 727-741 (1999).
  8. Abbas, F., et al. Revival of light signalling in the postmortem mouse and human retina. Nature. , (2022).
  9. Becker, S., Carroll, L. S., Vinberg, F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Visual Neuroscience. 37, (2020).
  10. Kantola, L., Piccolino, M., Wade, N. J. The action of light on the retina: Translation and commentary of Holmgren (1866). Journal of the History of the Neurosciences. 28 (4), 399-415 (2019).
  11. Frank, R. N., Dowling, J. E. Rhodopsin photoproducts: effects on electroretinogram sensitivity in isolated perfused rat retina. Science. 161 (3840), 487-489 (1968).
  12. Hamasaki, D. I. The effect of sodium ion concentration on the electroretinogram of the isolated retina of the frog. Journal of Physiology. 167 (1), 156-168 (1963).
  13. Granit, R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. Journal of Physiology. 77 (3), 207-239 (1933).
  14. Donner, K., Hemila, S., Koskelainen, A. Temperature-dependence of rod photoresponses from the aspartate-treated retina of the frog (Rana temporaria). Acta Physiologica Scandinavica. 134 (4), 535-541 (1988).
  15. Green, D. G., Kapousta-Bruneau, N. V. Electrophysiological properties of a new isolated rat retina preparation. Vision Research. 39 (13), 2165-2177 (1999).
  16. Luke, M., et al. The isolated perfused bovine retina--a sensitive tool for pharmacological research on retinal function. Brain Research Protocols. 16 (1-3), 27-36 (2005).
  17. Becker, S., Carroll, L. S., Vinberg, F. Rod phototransduction and light signal transmission during type 2 diabetes. BMJ Open Diabetes Research and Care. 8 (1), 001571 (2020).
  18. Nymark, S., Haldin, C., Tenhu, H., Koskelainen, A. A new method for measuring free drug concentration: retinal tissue as a biosensor. Investigative Ophthalmology & Visual Science. 47 (6), 2583-2588 (2006).
  19. Winkler, B. S., Kapousta-Bruneau, N., Arnold, M. J., Green, D. G. Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina. Visual Neuroscience. 16 (2), 345-353 (1999).

Tags

神经科学,第184期,
优化离 <em>体</em> 视网膜电图的设置和条件,以研究小眼睛和大眼睛的视网膜功能
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Abbas, F., Vinberg, F., Becker, S.More

Abbas, F., Vinberg, F., Becker, S. Optimizing the Setup and Conditions for Ex Vivo Electroretinogram to Study Retina Function in Small and Large Eyes. J. Vis. Exp. (184), e62763, doi:10.3791/62763 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter