Summary

从小鼠中分离和培养骨髓衍生树突状细胞的经济有效的方案

Published: July 01, 2022
doi:

Summary

在这里,我们提出了一种经济有效的方法,在用10 ng / mL GM-CSF / IL-4培养7天后从小鼠中分离和产生高纯度骨髓来源的树突状细胞。

Abstract

随着免疫学研究的进展,对树突状细胞(DC)的需求正在逐渐增加。然而,DC在所有组织中都很少见。分离DC的传统方法主要涉及通过注射大剂量(>10 ng / mL)的粒细胞 – 巨噬细胞集落刺激因子/ 白细胞介素-4(GM-CSF / IL-4)来诱导骨髓(BM)分化为DC,使该过程复杂且昂贵。在该方案中,使用在10ng / mL GM-CSF / IL-4培养基中培养的所有BM细胞,经过3-4次半培养交换后,每只小鼠(两个股骨)收获高达2.7 x 107 CD11c + 细胞(DC),纯度为80%-95%。培养10天后,CD11c,CD80和MHC II的表达增加,而细胞数量减少。培养7天后细胞数量达到峰值。此外,该方法仅需10分钟即可收获所有骨髓细胞,并且在培养1周后获得大量DC。

Introduction

树突状细胞(DC)是最强大的抗原呈递细胞(APC),用于激活幼稚的T细胞并诱导针对传染病,过敏性疾病和肿瘤细胞的特定细胞毒性T淋巴细胞(CTL)反应123。DC是先天免疫和适应性免疫之间的主要纽带,在免疫防御和维持免疫耐受性方面起着至关重要的作用。在过去的40年中,许多研究人员试图定义DC的亚群及其在炎症和免疫中的功能。根据这些研究,DC从骨髓细胞沿着骨髓和淋巴系发展。近年来,肿瘤疫苗取得了重大的里程碑,并拥有光明的未来。在机械上,肿瘤疫苗通过使用肿瘤抗原激活细胞毒性T淋巴细胞来调节免疫反应并防止肿瘤生长。基于DC的疫苗在肿瘤免疫治疗中起着重要作用,已被确定为最有前途的抗肿瘤疗法之一14。此外,DC已广泛应用于新型分子靶向药物和免疫检查点抑制剂的检测5.

研究人员迫切需要大量的高纯度DC来进一步研究DC的作用。然而,DC在各种组织和血液中很少见,仅占人类和动物血细胞的1%。骨髓树突状细胞(BMDC)的 体外 培养是获得大量DC细胞的重要方法。同时,用于从骨髓中生成DC的Lutz协议已被研究人员广泛使用6。虽然该方案在获得DC细胞方面是有效的,但它是复杂和昂贵的,涉及添加高浓度的细胞因子和红细胞的裂解。

在这项研究中,我们报告了一种从小鼠骨髓(BM)中分离几乎所有骨髓细胞的方法,并在 体外孵育7-9天后诱导分化为BMDC,GM-CSF和IL-4的浓度较低。该过程只需10分钟即可收获几乎所有骨髓细胞并将其悬浮在完整的培养基中。简而言之,我们在本研究中为BMDC提供了一种高效且具有成本效益的养殖方法。

Protocol

所有程序均经南京医科大学动物保育使用委员会批准。 1. 骨髓分离和BM细胞的制备 通过CO 2窒息处死C57BL / 6小鼠(18-22g ,6-8周龄)。将鼠标固定在鼠标操作台上。用70%乙醇消毒表面。 切开腿部皮肤以暴露肌肉和股动脉。用两个镊子夹住并撕下股动脉,然后将近端拉向腹部。注意:不要直接切除股动脉。否则,会导致出血过多,污染视野?…

Representative Results

从两个股骨中提取1 x 10 7-1.7 x10 7个细胞,并在种植在6孔板中之前重新悬浮在24mL培养基中(图1A)。2天后,通过完全改变培养基去除非贴壁细胞。在更换培养基之前,观察到大量悬浮细胞(图1B)。培养3天后,小细胞集落开始形成。第六天,菌落的大小和数量显著增加。在第七天,细胞数量达到峰值(22 x 10 6-27 x 106),…

Discussion

人类和小鼠具有不同的DC亚群,包括经典DC(cDC,包括cDC1和cDC2s),浆细胞样DC(pDC)和单核细胞衍生DC(MoDC)91011。人们普遍认为,cDC1s调节细胞毒性T淋巴细胞(CTL)对细胞内病原体和癌症的反应,cDC2调节对细胞外病原体,寄生虫和过敏原的免疫反应12。在GM-CSF和IL-46<sup class="…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由天津市科技计划(20JCQNJC00550)、天津市卫生科技计划(TJWJ202021QN033和TJWJ202021QN034)资助。

Materials

β-Mercaptoethanol Solarbio M8211
6-well plate Corning 3516
APC-MHC II Biolegend 116417
FBS Gibco 10100
PE-CD80 Biolegend 104707
Penicillin-Streptomycin Solarbio P1400
Percp/cy5.5-CD11c Biolegend 117327
PRMI-1640 Thermo 11875093
Recombinant Mouse GM-CSF Solarbio P00184
Recombinant Mouse IL-4 Solarbio P00196
TruStain Fc PLUS (anti-mouse CD16/32) Antibody Biolegend 156603

References

  1. Huang, M. N., et al. Antigen-loaded monocyte administration induces potent therapeutic antitumor T cell responses. Journal of Clinical Investigation. 130 (2), 774-788 (2020).
  2. Wang, P., Dong, S., Zhao, P., He, X., Chen, M. Direct loading of CTL epitopes onto MHC class I complexes on dendritic cell surface in vivo. Biomaterials. 182, 92-103 (2018).
  3. Banchereau, J., Steinman, R. M. Dendritic cells and the control of immunity. Nature. 392 (6673), 245-252 (1998).
  4. Jiang, P. L., et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomaterialia. 11, 356-367 (2015).
  5. Shi, Y., et al. Next-generation immunotherapies to improve anticancer immunity. Frontiers in Pharmacology. 11, 566401 (2020).
  6. Lutz, M. B., et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods. 223 (1), 77-92 (1999).
  7. Son, Y. I., et al. A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells. Journal of Immunological Methods. 262 (1-2), 145-157 (2002).
  8. Guo, L., et al. Fusion protein vaccine based on Ag85B and STEAP1 induces a protective immune response against prostate cancer. Vaccines. 9 (7), 786 (2021).
  9. Olweus, J., et al. Dendritic cell ontogeny: A human dendritic cell lineage of myeloid origin. Proceedings of the National Academy of Sciences of the United States of America. 94 (23), 12551-12556 (1997).
  10. Martin, P., et al. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors. Blood. 96 (-), 2511-2519 (2000).
  11. Anderson, D. A., Dutertre, C. A., Ginhoux, F., Murphy, K. M. Genetic models of human and mouse dendritic cell development and function. Nature Reviews: Immunology. 21 (2), 101-115 (2021).
  12. Vu Manh, T. P., Bertho, N., Hosmalin, A., Schwartz-Cornil, I., Dalod, M. Investigating evolutionary conservation of dendritic cell subset identity and functions. Frontiers in Immunology. 6, 260 (2015).
  13. Scheicher, C., Mehlig, M., Zecher, R., Reske, K. Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. Journal of Immunological Methods. 154 (2), 253-264 (1992).
  14. Brasel, K., De Smedt, T., Smith, J. L., Maliszewski, C. R. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 96 (9), 3029-3039 (2000).
  15. Mayordomo, J. I., et al. marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Medicine. 1 (12), 1297-1302 (1995).
  16. Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K., Falo, L. D. DNA-based immunization by in vivo transfection of dendritic cells. Nature Medicine. 2 (10), 1122-1128 (1996).
  17. Brunner, G. A., et al. Post-prandial administration of the insulin analogue insulin aspart in patients with type 1 diabetes mellitus. Diabetic Medicine. 17 (5), 371-375 (2000).
  18. Koido, S., et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. Journal of Immunology. 165 (10), 5713-5719 (2000).
  19. Jonasson, P. S., et al. Strength of the porcine proximal femoral epiphyseal plate: The effect of different loading directions and the role of the perichondrial fibrocartilaginous complex and epiphyseal tubercle – An experimental biomechanical study. Journal of Experimental Orthopaedics. 1 (1), 4 (2014).
  20. Labeur, M. S., et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. Journal of Immunology. 162 (1), 168-175 (1999).
  21. Hinkel, A., et al. Immunomodulatory dendritic cells generated from nonfractionated bulk peripheral blood mononuclear cell cultures induce growth of cytotoxic T cells against renal cell carcinoma. Journal of Immunotherapy. 23 (1), 83-93 (2000).
check_url/63125?article_type=t

Play Video

Cite This Article
Tang, H., Xie, H., Wang, Z., Peng, S., Ni, W., Guo, L. Economical and Efficient Protocol for Isolating and Culturing Bone Marrow-derived Dendritic Cells from Mice. J. Vis. Exp. (185), e63125, doi:10.3791/63125 (2022).

View Video