Summary

使用自动化平台 Lustro 在酵母中进行高通量光遗传学实验

Published: August 04, 2023
doi:

Summary

该协议概述了利用自动化平台Lustro对酵母中的光遗传学系统进行高通量表征的步骤。

Abstract

光遗传学通过利用基因编码的光敏蛋白提供对细胞行为的精确控制。然而,优化这些系统以实现所需的功能通常需要多个设计-构建-测试周期,这可能既耗时又费力。为了应对这一挑战,我们开发了 Lustro,这是一个将光刺激与实验室自动化相结合的平台,能够对光遗传学系统进行高效的高通量筛选和表征。

Lustro 使用配备照明装置、摇晃装置和读板器的自动化工作站。通过使用机械臂,Lustro 使微孔板在这些设备之间自动移动,从而可以刺激光遗传学菌株并测量其反应。该协议提供了使用Lustro表征用于萌 芽酵母酿酒酵母中基因表达控制的光遗传学系统的分步指南。该协议涵盖了 Lustro 组件的设置,包括照明设备与自动化工作站的集成。它还提供了对照明设备、读板机和机器人进行编程的详细说明,确保在整个实验过程中顺利运行和数据采集。

Introduction

光遗传学是一种强大的技术,它利用光敏蛋白来高精度地控制细胞的行为 1,2,3然而,光遗传学结构的原型设计和确定最佳照明条件可能非常耗时,因此很难优化光遗传学系统4,5。快速筛选和表征光遗传学系统活性的高通量方法可以加快设计-构建-测试周期,以对结构进行原型设计和探索其功能。

Lustro 平台是一种实验室自动化技术,专为光遗传学系统的高通量筛选和表征而设计。它将酶标仪、照明装置和振荡装置与自动化工作站6集成在一起。Lustro 结合了微孔板中细胞的自动培养和光刺激(图 1 和补充图 1),能够快速筛选和比较不同的光遗传学系统。Lustro 平台具有很强的适应性,可以推广到与其他实验室自动化机器人、照明设备、酶标仪、细胞类型和光遗传学系统(包括对不同波长的光有响应的机器人)配合使用。

该协议演示了Lustro用于表征光遗传学系统的设置和使用。以酵母中分裂转录因子的光遗传学控制为例系统,通过探测光输入与荧光报告基因 mScarlet-I7 表达之间的关系来说明该平台的功能和效用。通过遵循该协议,研究人员可以简化光遗传学系统的优化,并加速发现生物系统动态控制的新策略。

Protocol

本研究中使用的酵母菌株记录在 材料表中。这些菌株在 22 °C 至 30 °C 的温度范围内表现出强劲的生长,并且可以在各种标准酵母培养基中培养。 1. 设置自动化工作站 为自动化工作站配备能够移动微孔板的机器人夹持臂(RGA,参见 材料表)(图 1)。 将微孔板加热器振荡器(见材料表)…

Representative Results

图4A 显示了表达荧光报告基因的光遗传学菌株随时间变化的荧光值,该荧光报告基因由光诱导分裂转录因子控制。实验中使用的不同光照条件通过占空比的变化来反映,占空比表示灯亮起的时间百分比。观察到总荧光水平与光刺激的占空比成正比。 图4B 显示了同一实验的相应OD700 值。不同光照条件下光密度读数的一致性表明,该实验技术不会?…

Discussion

本文介绍的 Lustro 协议可自动执行培养、照明和测量过程,从而实现光遗传学系统的高通量筛选和表征6。这是通过将照明设备、酶标仪和摇动设备集成到自动化工作站中来实现的。该协议特别证明了Lustro在筛选整合到 酵母酿酒酵 母中的不同光遗传学结构和比较光诱导程序的效用。

该协议中强调的几个关键步骤对于有效利用 Lustro 至关重要。仔细设计?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院资助R35GM128873和美国国家科学基金会资助2045493(授予MNM)的支持。梅根·妮可·麦克莱恩(Megan Nicole McClean)博士在巴勒斯惠康基金会(Burroughs Wellcome Fund)的科学界面(Scientific Interface)上获得了职业奖。Z.P.H. 得到了 NHGRI 对基因组科学培训计划 5T32HG002760 的培训资助。我们感谢与麦克莱恩实验室成员进行的富有成效的讨论,特别是感谢基兰·斯威尼(Kieran Sweeney)对手稿的评论。

Materials

96-well glass bottom plate with  #1.5 cover glass Cellvis P96-1.5H-N
BioShake 3000-T elm (heater shaker) QINSTRUMENTS
Fluent Automation Workstation Tecan
LITOS (alternative illumination device) Hohener, et al. Scientific Reports. 2022
optoPlate-96 (illumination device) Bugaj, et al. Nature Protocols. 2019
Robotic Gripper Arm Tecan Standard or long Z axes; regular gripper head or automatic Finger Exchange System gripper head, both with a choice of gripper fingers – eccentric, long eccentric, centric, tube; barcode reader option
Spark (plate reader) Tecan
Synthetic Complete media SigmaAldrich Y1250
Tecan Connect (user alert app) Tecan
yMM1734 (BY4741 Matα ura3Δ0::5' Ura3 homology, pRPL18B-Gal4DBD-eMagA-tENO1, pRPL18B-eMagB-Gal4AD-tENO1, pGAL1-mScarlet-I-tENO1, Ura3, Ura 3' homology  his3D1 leu2D0 lys2D0 gal80::KANMX gal4::spHIS5) Harmer, et al. ACS Syn Bio. 2023
yMM1763 (BY4741 Matα ura3Δ0::5' Ura3 homology, pRPL18B-Gal4DBD-CRY2(535)-tENO1, pRPL18B-Gal4AD-CIB1-tENO1, pGAL1-mScarlet-I-tENO1, Ura3, Ura 3' homology  his3D1 leu2D0 lys2D0 gal80::KANMX gal4::spHIS5) Harmer, et al. ACS Syn Bio. 2023
yMM1765 (BY4741 Matα ura3Δ0::5' Ura3 homology, pRPL18B-Gal4DBD-eMagA-tENO1, pRPL18B-eMagBM-Gal4AD-tENO1, pGAL1-mScarlet-I-tENO1, Ura3, Ura 3' homology  his3D1 leu2D0 lys2D0 gal80::KANMX gal4::spHIS5) Harmer, et al. ACS Syn Bio. 2023
YPD Agar SigmaAldrich Y1500

References

  1. Pérez, A. L. A., et al. Optogenetic strategies for the control of gene expression in yeasts. Biotechnology Advances. 54, 107839 (2022).
  2. Lan, T. -. H., He, L., Huang, Y., Zhou, Y. Optogenetics for transcriptional programming and genetic engineering. Trends in Genetics. 38 (12), 1253-1270 (2022).
  3. Olson, E. J., Tabor, J. J. Optogenetic characterization methods overcome key challenges in synthetic and systems biology. Nature Chemical Biology. 10, 502-511 (2014).
  4. Hallett, R. A., Zimmerman, S. P., Yumerefendi, H., Bear, J. E., Kuhlman, B. Correlating in vitro and in vivo Activities of Light Inducible Dimers: a Cellular Optogenetics Guide. ACS Synthetic Biology. 5 (1), 53-64 (2016).
  5. Scott, T. D., Sweeney, K., McClean, M. N. Biological signal generators: integrating synthetic biology tools and in silico control. Current Opinion in Systems Biology. 14, 58-65 (2019).
  6. Harmer, Z. P., McClean, M. N. Lustro: High-throughput optogenetic experiments enabled by automation and a yeast optogenetic toolkit. ACS Synthetic Biology. 12 (7), 1943-1951 (2023).
  7. Bindels, D. S., et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods. 14 (1), 53-56 (2017).
  8. Bugaj, L. J., Lim, W. A. High-throughput multicolor optogenetics in microwell plates. Nature Protocols. 14 (7), 2205-2228 (2019).
  9. Höhener, T. C., Landolt, A. E., Dessauges, C., Hinderling, L., Gagliardi, P. A., Pertz, O. LITOS: a versatile LED illumination tool for optogenetic stimulation. Scientific Reports. 12 (1), 13139 (2022).
  10. Grødem, E. O., Sweeney, K., McClean, M. N. Automated calibration of optoPlate LEDs to reduce light dose variation in optogenetic experiments. BioTechniques. 69 (4), 313-316 (2020).
  11. Dunlop, M. J. . A supplemental guide to building the optoPlate-96. , (2021).
  12. Thomas, O. S., Hörner, M., Weber, W. A graphical user interface to design high-throughput optogenetic experiments with the optoPlate-96. Nature Protocols. 15 (9), 2785-2787 (2020).
  13. Robertson, J. B., Davis, C. R., Johnson, C. H. Visible light alters yeast metabolic rhythms by inhibiting respiration. Proceedings of the National Academy of Sciences of the United States of America. 110 (52), 21130-21135 (2013).
  14. . Synthetic Complete (SC) Medium. 2016 (11), (2016).
  15. Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nature Methods. 16 (4), 277-278 (2019).
  16. Hecht, A., Endy, D., Salit, M., Munson, M. S. When wavelengths collide: bias in cell abundance measurements due to expressed fluorescent proteins. ACS Synthetic Biology. 5 (9), 1024-1027 (2016).
  17. . YPD media. 2010 (9), (2010).
  18. . . Low-Fluorescence Yeast Nitrogen Base without Riboflavin and Folic Acid Medium (LFM). 2016 (11), (2016).
  19. Csibra, E., Stan, G. -. B. Parsley: a web app for parsing data from plate readers. Zenodo. , (2023).
  20. Gerhardt, K. P., et al. An open-hardware platform for optogenetics and photobiology. Scientific Reports. 6 (1), 35363 (2016).
  21. Gutiérrez Mena, J., Kumar, S., Khammash, M. Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback. Nature Communications. 13, 4808 (2022).
  22. Milias-Argeitis, A., et al. In silico feedback for in vivo regulation of a gene expression circuit. Nature Biotechnology. 29 (12), 1114-1116 (2011).
  23. Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P., Khammash, M. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nature Communications. 7, 12546 (2016).
  24. Bertaux, F., et al. Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight. Nature Communications. 13 (1), 3363 (2022).
  25. Benisch, M., Benzinger, D., Kumar, S., Hu, H., Khammash, M. Optogenetic closed-loop feedback control of the unfolded protein response optimizes protein production. Metabolic Engineering. 77, 32-40 (2023).
  26. Melendez, J., Patel, M., Oakes, B. L., Xu, P., Morton, P., McClean, M. N. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures. Integrative Biology. 6 (3), 366-372 (2014).
  27. Datta, S., et al. High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates. bioRxiv. , (2022).
  28. Pouzet, S., et al. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales. Frontiers in Bioengineering and Biotechnology. 11, 1085268 (2023).
  29. Pouzet, S., Banderas, A., Le Bec, M., Lautier, T., Truan, G., Hersen, P. The promise of optogenetics for bioproduction: dynamic control strategies and scale-up instruments. Bioengineering. 7 (4), 151 (2020).
check_url/65686?article_type=t

Play Video

Cite This Article
Harmer, Z. P., McClean, M. N. High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro. J. Vis. Exp. (198), e65686, doi:10.3791/65686 (2023).

View Video