Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

使用磁阿基米德策略的细胞图案化

Published: February 2, 2024 doi: 10.3791/66063

Summary

该协议描述了一种基于磁阿基米德效应的无墨水、无标记、独立于基板、高通量细胞图案化的方法。

Abstract

细胞图案化可以精确控制细胞定位,在细胞行为研究中具有独特的优势。在该协议中,引入了一种基于磁阿基米德(Mag-Arch)效应的细胞图案化策略。这种方法可以在不使用油墨材料或标记颗粒的情况下精确控制细胞分布。通过引入顺磁性试剂来增强细胞培养基的磁化率,细胞被磁铁排斥,并排列成与位于微流体基板下方的磁铁组互补的图案。

在本文中,提供了使用基于 Mag-Arch 的策略进行细胞图案化的详细过程。提供了用于单细胞类型以及用于共培养实验的多种细胞类型的图案化方法。此外,还提供了制造包含细胞图案化通道的微流控装置的综合说明。使用并行方法实现此功能具有挑战性,但可以以简化且经济高效的方式完成。采用基于 Mag-Arch 的细胞图案化为研究人员提供了强大的 体外 研究工具。

Introduction

细胞图案化正在发展成为一种直观而强大的 体外 研究技术1.通过操纵培养板中的细胞位置,它为各种实验提供了解决方案,包括细胞迁移2、仿生多细胞共培养3、类器官组装4、生物材料研究5 等。在大多数情况下,无墨水、无标记方法是细胞图案化的首选方法,因为它为后续研究提供了易于操作和高细胞活力。

磁拱效应是一种物理现象,其中顺磁性液体中的抗磁性物体倾向于向磁场较弱的区域移动6.活细胞具有天然的抗磁性,而细胞培养基可以通过添加可溶性顺磁性元素制成顺磁性,例如钆喷酸二葡甲胺 (Gd-DTPA),通常用于静脉注射核磁共振成像作为造影剂7。因此,预计细胞将被周围的顺磁性介质排斥,并移动到磁场较弱的区域8.使用一组钕磁铁可以很容易地产生图案磁场。理想情况下,电池图案与磁铁图案相反。从技术上讲,这被定义为一种无标记方法,因为唯一的附加试剂 Gd-DTPA 保留在细胞外环境中并且不与细胞结合。因此,通过更换培养基,可以很容易地避免对后续细胞培养的潜在影响。与其他方法1,3,9,10相比基于Mag-Arch的策略不需要生物墨水成分或应用特定颗粒来积极标记细胞。此外,它已被证明可以在多种底物上进行细胞粘附,并且能够实现高通量细胞图案化4

本文介绍了使用基于 Mag-Arch 的方法进行细胞图案化的详细协议,涵盖了从设备制造到调整细胞图案的所有内容。除了我们已经演示的图案外,用户还可以使用磁铁和Gd-DTPA解决方案轻松创建各种单元图案。此外,还提供了用于在封闭的微流控芯片中组装复杂的共培养模式和操纵细胞的方案。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 组装磁铁组

  1. 组装条形图案的磁铁组。
    1. 选择扁平矩形磁铁,如 图1A所示。用于此演示的矩形磁铁的尺寸为 1.5 mm × 10 mm × 35 mm(厚度×高度×长度)(参见 材料表)。磁铁的厚度决定了细胞条纹之间的间隙。
    2. 将 2 毫米厚的硅胶板(参见 材料表)切成 2 毫米× 8 毫米× 30 毫米的矩形。确保这些硅胶板的后两个尺寸略小于上述矩形磁铁的尺寸,以优化组装。硅胶板的厚度决定了电池条纹的宽度。
    3. 逐层组装矩形磁铁和硅胶板,如 图 1A 所示。每个磁铁组由 4 个磁铁和 3 个硅胶板组成。确保每个相邻磁铁的磁极相对,以便磁铁组可以由于内在吸引力而自动对齐。
    4. 使用前对磁铁进行消毒。
      注意:建议用纯水清洗磁铁组,然后将它们浸入 75% 乙醇中 10 分钟。这些磁体组的整体尺寸为 12 mm × 10 mm × 35 mm,设计用于标准 6 孔细胞培养板。
  2. 组装点阵图案的磁铁组
    1. 选择微型圆柱形磁铁,如 图1B所示。用于此演示的圆柱形磁铁的尺寸为 Φ1.5 mm × 10 mm(直径×高度),沿轴向磁化。
    2. 图 1B 所示组装圆柱形磁铁。确保每个磁铁组由 36 个圆柱形磁铁组成,这些磁铁排列在 6 × 6 网格中。此外,确保每个相邻磁铁的磁极相对,以允许磁铁组由于内在吸引力而自动对齐。
    3. 使用前对磁铁进行消毒,遵循与步骤 1.1.4 相同的步骤。这些磁体组的整体尺寸为 9 mm × 10 mm × 9 mm,设计用于标准 6 孔细胞培养板。

2. 载玻片上的细胞图案

  1. 准备细胞培养装置。
    1. 使用 2 毫米厚的硅胶板制作硅胶模具。使用打孔器在板上创建一个 1 厘米× 1 厘米的矩形孔。在孔周围修剪硅胶板,以制作一个圆形模具(直径 = 25 mm),孔位于中心,如 图 1C 所示。
    2. 使用超声波清洗机彻底清洁硅胶模具。通过用纯净水洗涤模具10分钟来灭菌模具,然后用75%乙醇代替水再消毒10分钟。最后,将模具在65°C的灭菌器盒中干燥60分钟。
    3. 将灭菌的硅胶模具连接到Φ25 mm圆形玻璃细胞载玻片上,轻轻按压,使硅胶粘附在玻璃上,如 图1C所示。由此产生的细胞培养装置将具有玻璃底面和 200 μL 培养腔。该装置的尺寸为 Φ25 mm × 2.15 mm,适用于标准 6 孔细胞培养板。
      注意:上述细胞培养装置可以用其他底面薄于 0.5 毫米的培养皿代替,例如共聚焦培养皿。
    4. 将磁铁组放在 6 孔板上。建议使用非磁性镊子,以便于操作。
      注意:从这一点开始,所有后续步骤都应在无菌条件下进行,直到观察到细胞模式。
    5. 将细胞培养装置放置在 6 孔板孔中的磁铁组顶部。确保细胞培养装置水平放置,底部与磁铁组紧密接触。
  2. 制备含有Gd-DTPA的细胞培养基
    1. 制备市售的Gd-DTPA注射液(见 材料表),通常浓度为500mM。通过将 30 μL Gd-DTPA 注射液加入 470 μL 完全细胞培养基中来稀释进样液,以达到 30 mM 的目标浓度。
      注:根据当地法规和可用性,具有相同目标浓度的其他钆基造影剂 (GBCA) 可能会产生类似的结果11.
  3. 创建单元格模式。
    1. 收获细胞进行图案化。在本演示中,使用人脐静脉内皮细胞(HUVEC,见 材料表)进行图案化(图2)。将细胞在200× g (室温下)离心5分钟,以从悬浮液中收集它们,并将它们重悬于含有Gd-DTPA的培养基中。计算细胞密度。
    2. 用含 Gd-DTPA 的培养基将细胞密度调节至约 ~2 ×10 个 5 个 细胞/mL。轻轻混合细胞悬液,并向每个细胞培养模具的腔中加入 200 μL,以形成充满边缘的液体表面。
    3. 小心地将板转移到细胞培养箱中并孵育3-6小时,直到细胞很好地粘附在底物上。避免砰的一声关上培养箱门,以防止干扰细胞图案的组装。对于粘附率低的细胞,用GBCAs过夜处理通常是安全的12
    4. 当细胞粘附在细胞培养装置的腔底部时,细胞图案化被认为是完整的。用完全培养基替换含Gd-DTPA的培养基。
    5. 从磁铁组中取出细胞培养装置。人们可以立即观察细胞模式或将设备转移到新的培养板中进行进一步培养。

3. 磁铁侧向共培养图案:移动模板的制作

注意:以下程序旨在利用基于 Mag-Arch 的单元图案并探索更多应用的可能性。

  1. 按照步骤 1 和步骤 2 准备设备以进行条纹单元图案化。但是,将细胞密度降低到1×105 个细胞/mL,并用更薄的硅胶板替换将磁铁分开的硅胶板,使每个条纹细胞图案更薄。
    注意:这为以条纹模式放置多个单元格提供了足够的区域。作为参考,我们建议使用 1 毫米硅胶板而不是 2 毫米来分离磁铁。
  2. 对第一种类型的单元格进行图案化,如步骤 2.2-2.3 所示。此步骤还需要 3-6 小时进行细胞附着。
    注意:为了区分共培养系统中的不同细胞类型,用户可以在图案化之前使用荧光染料(如 DiI、DiD 或细胞跟踪器(CMTPX、CMFDA、CMAC 等)标记细胞。例如,对于 DiI 和 DiD 染色,每 1 mL 无 FBS 培养基中加入 1 μL 储备溶液 (10 mM)(参见 材料表),并充分混合以获得工作溶液。用工作溶液替换培养基以覆盖贴壁细胞。孵育 30 分钟并用 PBS 洗涤 3 次后,继续进行细胞收获。
  3. 对第一种类型的细胞进行图案化后,将细胞培养装置从下面的磁铁向右移动 1 mm,如 图 3Aii 所示。
  4. 用 200 μL PBS 轻轻洗涤载玻片两次。避免让载玻片干燥。
  5. 以步骤2.2-2.3中所示的相同方式对第二种类型的单元格进行图案化。
  6. 图3Aiii所示,将细胞培养装置从下面的磁铁向右移动1 mm,并再次用200μLPBS洗涤载玻片。以步骤2.2-2.3中所示的相同方式对第三种类型的单元格进行图案化。
  7. 对所有类型的细胞进行图案化后,用 200 μL PBS 轻轻洗涤载玻片两次,并用完整的细胞培养基替换。
  8. 从磁铁组中取出细胞培养装置。然后可以观察细胞模式或将设备转移到新的培养板上进行进一步培养。

4. 通过调节Gd-DTPA浓度进行共培养图案化

注意:GBCA在工作浓度(≤75 mM)下不会显着影响细胞粘附或随后的生长。此外,细胞模式受 Gd-DTPA 浓度的影响:浓度越高,细胞模式越小/越薄。因此,可以通过简单地调整Gd-DTPA的浓度来创建共培养系统。此示例演示了同心圆阵列的图案化。

  1. 使用步骤1.2中的微型圆柱形磁铁对第一种类型的电池进行图案化,如步骤2.2-2.3所示。在收获细胞之前,用荧光染料(如 DiI、DiD 或细胞追踪器)标记细胞,以区分共培养系统中的不同细胞类型。
    注意:需要更高浓度的 Gd-DTPA(50 mM 而不是 30 mM)和更低的细胞密度,大约 1 × 10 个5 个 细胞/mL。
  2. 对第一个细胞阵列进行图案化后,用 200 μL PBS 轻轻洗涤载玻片两次。避免让载玻片变干。
  3. 按照与以前相同的步骤对第二种类型的细胞进行图案化。使载玻片在磁铁上保持相对不动,以防止脱位。建议将带有空心的硅胶板连接到载玻片的下表面,该空心适合磁铁组。
    注意:在这里,需要较低浓度的Gd-DTPA(20mM而不是30mM),以便第二个细胞模式预计比第一个细胞模式大,如 图3B所示。
  4. 对所有类型的细胞进行图案化后,用 200 μL PBS 轻轻洗涤载玻片两次,并用完全细胞培养基替换培养基。
  5. 从磁铁组中取出细胞培养装置。然后可以观察细胞模式或将设备转移到新的培养板上进行进一步培养。

5. 微流控芯片中的细胞图案化

注意:在我们之前的研究8 中,基于 Mag-Arch 的方法已被证明可以在封闭的狭窄腔室中工作。这是在微流体通道中图案化点阵的示例。

  1. 微流体芯片的制造
    1. 定制 40 mm × 75 mm × 20 mm 聚四氟乙烯 (PTFE) 模具(参见 材料表),其中包含 24 mm × 50 mm × 8 mm 的矩形型腔,如 图 4A 所示。
    2. 压平 0.5 毫米厚的硅胶板。根据流体通道的形状切割硅胶板,流体通道具有 15 mm × 20 mm × 0.5 mm 的矩形腔体,入口和出口侧都有三角形缓冲区,如图 4A,B 所示。
    3. 定制 40 毫米× 75 毫米矩形玻璃板。用空气等离子清洗玻璃板 30 秒。
    4. 空气等离子体清洗后,立即用 0.5 mL 市售抗粘连缓冲液覆盖玻璃板(参见 材料表)并让它们风干。用乙醇清洗玻璃板一次,然后让它们风干。
    5. 将步骤5.1.2中制备的硅胶板牢固地连接到玻璃板的中间,如 图4A所示。
    6. 根据制造商的说明制备聚二甲基硅氧烷(PDMS)预聚物(见 材料表)。对于每个PDMS芯片,将10 g碱成分和1 g固化剂称取到50 mL离心管中。
    7. 用玻璃搅拌棒充分混合药剂,直到小气泡均匀分布在胶体中。混合需要5-10分钟,具体取决于胶体体积。将胶体预聚物在500× g (室温下)离心1分钟以消除气泡。
    8. 将 ~10 mL 的预聚物缓慢倒入型腔中以填充 PTFE 模具。
    9. 小心地将模具放入真空储液罐中并保持水平,以防止预聚物流走。
    10. 用真空泵去除预聚物中残留的气泡。吸尘需要 120-180 分钟。
    11. 如果需要,倒入更多的预聚物以进一步填充模具型腔。再吸尘 60 分钟。
    12. 小心地用玻璃板盖住PTFE模具,二氧化硅面朝向型腔,如 图4Bi所示。
    13. 确保消除所有气泡。将模具转移到60°C干燥箱中,使预聚物凝固过夜。
    14. 从烤箱中取出模具。冷却后,小心地对凝固的PDMS盖进行脱模。用 Φ1 mm 针刺器创建入口和出口。
    15. 按照步骤 2.1.2 清洗 PDMS 盖和 24 mm × 50 mm 盖玻片。
      注意: 在无菌条件下继续执行以下步骤。
    16. 连接PDMS盖和盖玻片,以创建包含高度约为~500μm的流道的微流体芯片。底部应由一个 ~0.15 mm 的玻璃盖玻片组成,以便使用基于 Mag-Arch 的策略进行细胞图案化。
  2. 将市售的无菌适配器组装到微流体芯片8 的入口和出口中。
  3. 制备2%(w / v,溶解在PBS中)明胶包衣缓冲液。通过高压灭菌对缓冲液进行灭菌。
  4. 使用 1 mL 注射器 通过 入口适配器将明胶包被缓冲液注入芯片中。如果出现气泡,请用额外的涂层缓冲液将其冲洗掉。
  5. 将芯片放入 10 cm 细胞培养皿中。在培养皿底部周围加入 1 mL PBS,以避免干燥。将培养皿转移到细胞培养箱中。涂层需要 30 分钟。
  6. 通过入口用 2 mL 含 Gd 的培养基 (30 mM) 冲洗包被缓冲液。
  7. 用 1 mL 注射器轻轻注射含有 30 mM Gd-DTPA 的 1 mL 细胞悬液。
  8. 如步骤2.2-2.3所示的图案电池使用步骤1.2中的微型圆柱形磁铁。
    注意: 但是,建议将带有适合磁铁组的空心硅胶板连接到载玻片的下表面,如 图 4Ci 所示。
  9. 图案化后,用 1 mL 注射器冲洗,用 1 mL 完全培养基轻轻刷新含有 Gd-DTPA 的培养基。
    注意:从步骤5.7-5.9开始,微流体中的细胞图案化过程大约需要180分钟,这类似于标准载玻片上的细胞图案化。
  10. 在显微镜下量化图案。如果需要,将微流体芯片连接到循环培养装置以进行进一步培养。
    注意:根据我们的经验,当由基于微泵的简单设备支持时,细胞能够生长至少 72 小时,该设备在细胞培养箱8 中为微流体提供连续流动的新鲜培养基。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

选择矩形(1.5 mm × 10 mm × 35 mm)和圆柱形(Φ1.5 m × 10 mm)磁体来创建电池图案作为演示。用户可以灵活地修改磁铁的尺寸和形状,或以不同的方式组装它们以创建不同的细胞图案。在图1A,B中,磁铁被组装起来,磁极用蓝色(南)和红色(北)描绘以清晰起见。在这种配置中,磁铁横向相互吸引并自行对齐,如图 2 所示。图1C,D说明了细胞培养装置的结构和细胞图案化程序。

图 2 显示了单体细胞模式。GFP标记的HUVECs在荧光显微镜下进行观察。使用相应的磁铁组将细胞组织成条纹和点阵图案。对于快速粘附在载玻片上(120-180分钟内)的HUVEC,整个过程在4小时内完成。遵循该协议可产生具有明确边缘和高均匀性的图案。为了确定活力,用Gd-DTPA处理细胞12小时,这比步骤2中的3-6小时长得多。然而,活/死染色和 CCK8 测定8 均未显示细胞活力显着降低。相对高浓度的Gd-DTPA(50 mM)引起统计学差异,但仍保持90.76%±1.78%的活率(补充图1)。

在单型细胞图案化方案的基础上,为潜在的共培养应用提供了多型细胞图案化示例。在这种情况下,使用了 HUVEC、A2780 卵巢癌细胞和平滑肌细胞 (SMC)。为了区分它们,在图案化之前用GFP、DiD和DiI标记细胞。通过遵循步骤3,生成并排条纹的三方细胞图案(图3A)。相反,步骤4用于通过调整Gd-DTPA的浓度来创建同心点阵列(图3B)。第一层细胞用DiI(红色)染色,并用50 mM Gd-DTPA图案化,而第二层细胞用GFP(绿色)标记,用25 mM Gd-DTPA图案化。因此,第一层的点尺寸较小,被第二层点状细胞同心包围。不同细胞类型表现出不同的附着和扩散速率,HUVECs附着和扩散速度快,A2780s附着快但扩散较慢,SMC附着和扩散相对较慢。这些结果表明,各种细胞类型可以在3 h内形成细胞模式,并用于共培养实验。

此外,还证明使用磁场的细胞图案与封闭的窄培养设备(如微流控芯片)兼容。按照步骤5,制造微流控芯片,并在其中生成点阵(图4)。

Figure 1
图 1:基于磁拱的单元图案的设置和示意图 。 (A) 用于创建条纹单元图案的磁铁组的组装。(B) 组装用于生成点阵单元图案的磁体组。(C) 细胞培养装置的设置。(D) 细胞图案化的分步程序。 请点击这里查看此图的较大版本.

Figure 2
图 2:将器件组装并将 HUVEC 图案化为条纹和点阵图案 。 (A) 限制在细胞培养设备 (i) 内并放置在细胞培养板 (ii) 中的磁铁组。(B)和(C)磁铁组和相应的电池模式。用绿色荧光蛋白 (GFP) 标记细胞以可视化细胞模式。比例尺 = 1.5 mm;插图 = 500 μm。 请点击这里查看此图的较大版本。

Figure 3
图 3:采用分步策略的共培养系统图案化。 (A) 使用磁铁侧向 (i-iii) 进行共培养图案化。用GFP(绿色)、DiD(蓝色)和DiI(红色)标记细胞,以区分不同的细胞类型。比例尺 = 1 mm。 (B) 通过调节 Gd-DTPA 浓度实现共培养图案;(i) 50 mM,(ii) 20 mM。比例尺 = 1.5 mm;插图 = 250 μm. 请点击这里查看此图的较大版本.

Figure 4
图 4:微流控室中的细胞图案。 (A)微流控模具示意图。(B) 使用聚二甲基硅氧烷(PDMS)制造微流控(i,ii)。(C)微流控装置内的细胞图案(i,ii和显示点阵细胞图案(iii)的代表性结果。用绿色荧光蛋白(GFP)标记细胞。比例尺 = 3 mm。 请点击这里查看此图的较大版本.

补充图1:Gd-DTPA对细胞活力的影响。 用不同浓度的 Gd-DTPA 处理 HUVEC 12 小时,然后进行活/死染色或 CCK-8 测定。(A) HUVECs的活/死染色。比例尺 = 200 μm。 (B) 描述活/死染色结果的直方图。(C) 显示 CCK-8 检测结果的直方图。 请点击这里下载此文件。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

基于 Mag-Arch 的细胞图案化为大多数生物医学实验室提供了用户友好的解决方案。该方法与无墨水、无标记、独立于基材的特征以及高通量图案化的能力并行 8,13。对于单体细胞图案化,它以一步方式对细胞进行图案化。该过程只需刷新培养基即可完成。

以前的研究使用磁性粒子来标记细胞并用磁铁吸引它们以形成精确的图案14,15。然而,磁性颗粒在细胞上的存在引发了人们对细胞行为潜在影响的担忧。基于 Mag-Arch 的细胞图案采用相反的策略,将细胞外液体变成顺磁性,而不是细胞。这种策略通过刷新培养基可以更容易地去除多余的顺磁性试剂。研究已经生成了具有基于 Mag-Arch 的细胞图案的细胞球体和点阵列11,16。与现有的基于Mag-Arch的研究相比,该协议提出的方法可以自由定制图案的形状。此外,该协议还提出了制造共培养系统的策略。正如我们在微流体中测试的那样,它也被证明可以在封闭的狭窄细胞培养室内工作。

与需要专业生物打印设备17、定制模板18或复合物表面改性19的并行方法不同,基于Mag-Arch的方法只需要两个必需品:磁体和GBCA。磁铁图案的表面反向决定了电池图案。演示了几种基本的条纹和点阵图案。用户可以使用不同形状的磁铁组自由生成图案,这些磁铁组在市场上大量可用。为了达到理想的效果,建议采用提供足够磁力的磁铁。在实践中,我们采用了N52钕铁硼磁体,其剩磁力超过1430 mT,磁极表面磁力超过100 mT。对于GBCAs,采用Gd-DTPA是因为它在生理条件下稳定,并且在大多数国家和地区价格低廉。其他GBCA可以替代采用。大环非离子 GBCA,如钆布酚和钆特利多,在对脆弱细胞进行长期治疗时可能是降低细胞毒性的更好选择11,12

基于Mag-Arch的单元图案的局限性主要在于磁体产生的磁场的工作区域。按照平方反比公式,磁场随着距离8 的增加而急剧减小。因此,Mag-Arch 方法无法在底部厚度大于 1 mm 的一般聚苯乙烯细胞培养皿或培养皿上组装理想的细胞图案。因此,该方案必须在较薄的细胞培养表面上工作,例如载玻片或共聚焦细胞培养皿。在微流控内部进行图案化时,还要求微流控的底部载玻片应薄于0.5mm。为了建立共培养系统,该方法可能很耗时,因为每增加一种细胞类型,细胞附着的时间就会增加 3-6 小时。

总体而言,该协议为细胞图案化提供了一种简化的方法,无需任何特殊设备即可在大多数实验室中复制。用户可以将其用作研究细胞行为、模拟多细胞微环境或测试生物材料的细胞亲和力的强大工具8

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

提交人没有相互竞争的经济利益。

Acknowledgments

本研究得到了国家重点研发计划(2021YFA1101100)、国家自然科学基金(32000971)、中央高校基本科研业务费(2021FZZX001-42)和浙江大学上海高等研究院星夜科学基金(批准号:Grant No.SN-ZJU-SIAS-004)。

Materials

Name Company Catalog Number Comments
A2780 ovarian cancer cells Procell CL-0013
Cell culture medium (DMEM, high glucose) Gibco 11995040
Cover slides Citotest Scientific 80340-3610 For fabricating microfluidics. Dimension: 24 mm × 50 mm
DiD MedChemExpress (MCE)  HY-D1028 For labeling cells with red fluorescence (Ex: 640 nm)
DiI MedChemExpress (MCE)  HY-D0083  For labeling cells with orange fluorescence (Ex: 550 nm)
Fetal Bovine Serum (FBS) Biochannel BC-SE-FBS07
Gadopentetate dimeglumine (Gd-DTPA) Beijing Beilu Pharmaceutical  H10860002
Gelatin Sigma Aldrich V900863
Glass cell slides Citotest Scientific 80346-2510 Diameter: 25 mm; thickness: 0.19-0.22 mm
Glass plates PURESHI hardware store For fabricating microfluidics. Dimension: 40 mm × 75 mm
Human Umbilical Vein Endothelial Cells (HUVECs) Servicebio STCC12103G-1
Neodymium-iron-boron magnets (N52) Lalaci
Non-toxic glass plate coating (Gel Slick Solution) Lonza 1049286 For convenience of demolding when fabricating microfluidics
Phosphate Buffered Saline (PBS) Servicebio G4200
Plasma cleaner SANHOPTT PT-2S
Polydimethylsiloxane (PDMS) kit DOWSIL SYLGARD 184 Silicone Elastomer Kit For fabricating microfluidics
Polytetrafluoroethylene (PFTE) mold PURESHI hardware store Customized online, for fabricating microfluidics
Silicon plate PURESHI hardware store
Smooth Muscle Cells (SMC) Procell CL-0517
Ultrasonic cleaner Sapeen CSA-02

DOWNLOAD MATERIALS LIST

References

  1. Christian, J., et al. Control of cell adhesion using hydrogel patterning techniques for applications in traction force microscopy. J Vis Exp. 179, e63121 (2022).
  2. Abbas, Y., Turco, M. Y., Burton, G. J., Moffett, A. Investigation of human trophoblast invasion in vitro. Hum Reprod Update. 26 (4), 501-513 (2020).
  3. Park, M., et al. Modulation of heterotypic and homotypic cell-cell interactions via zwitterionic lipid masks. Adv Healthc Mater. 6 (15), 1700063 (2017).
  4. Ren, T., Chen, P., Gu, L., Ogut, M. G., Demirci, U. Soft ring-shaped cellu-robots with simultaneous locomotion in batches. Adv Mater. 32 (8), e1905713 (2020).
  5. Ren, T., Steiger, W., Chen, P., Ovsianikov, A., Demirci, U. Enhancing cell packing in buckyballs by acoustofluidic activation. Biofabrication. 12 (2), 025033 (2020).
  6. Ge, S., et al. Magnetic levitation in chemistry, materials science, and biochemistry. Angew Chem Int Ed Engl. 59 (41), 17810-17855 (2020).
  7. Puluca, N., et al. Levitating cells to sort the fit and the fat. Adv Biosyst. 4 (6), e1900300 (2020).
  8. Ren, T., et al. Programing cell assembly via ink-free, label-free magneto-archimedes based strategy. ACS Nano. 17 (13), 12072-12086 (2023).
  9. Li, Y. C., et al. Programmable laser-assisted surface microfabrication on a poly(vinyl alcohol)-coated glass chip with self-changing cell adhesivity for heterotypic cell patterning. ACS Appl Mater Interfaces. 7 (40), 22322-22332 (2015).
  10. Chliara, M. A., Elezoglou, S., Zergioti, I. Bioprinting on organ-on-chip: Development and applications. Biosensors (Basel). 12 (12), 1135 (2022).
  11. Moncal, K. K., Yaman, S., Durmus, N. G. Levitational 3D bioassembly and density-based spatial coding of levitoids. Adv Funct Mater. 32 (50), 2204092 (2022).
  12. Parfenov, V. A., et al. Magnetic levitational bioassembly of 3D tissue construct in space. Sci Adv. 6 (29), eaba4174 (2020).
  13. Dell, A. C., Wagner, G., Own, J., Geibel, J. P. 3D bioprinting using hydrogels: Cell inks and tissue engineering applications. Pharmaceutics. 14 (12), 2596 (2022).
  14. Ino, K., Ito, A., Honda, H. Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng. 97 (5), 1309-1317 (2007).
  15. Okochi, M., Matsumura, T., Honda, H. Magnetic force-based cell patterning for evaluation of the effect of stromal fibroblasts on invasive capacity in 3d cultures. Biosens Bioelectron. 42, 300-307 (2013).
  16. Mishriki, S., et al. Rapid magnetic 3D printing of cellular structures with mcf-7 cell inks. Research (Wash D C). 2019, 9854593 (2019).
  17. Ozturk-Oncel, M. O., Leal-Martinez, B. H., Monteiro, R. F., Gomes, M. E., Domingues, R. M. A. A dive into the bath: Embedded 3D bioprinting of freeform in vitro models. Biomater Sci. 11, 5462-5473 (2023).
  18. Sahni, G., Yuan, J., Toh, Y. C. Stencil micropatterning of human pluripotent stem cells for probing spatial organization of differentiation fates. J Vis Exp. 112, e54097 (2016).
  19. Joddar, B., et al. Engineering approaches for cardiac organoid formation and their characterization. Transl Res. 250, 46-67 (2022).

Tags

《生物工程》,第204期,
使用磁阿基米德策略的细胞图案化
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Zhou, X., Maitusong, M., Ren, T.,More

Zhou, X., Maitusong, M., Ren, T., Wu, Y. Cell Patterning Using Magnetic-Archimedes Strategy. J. Vis. Exp. (204), e66063, doi:10.3791/66063 (2024).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter