A subscription to JoVE is required to view this content.  Sign in or start your free trial.
Operation of High-pressure Reactor Vessels
  • 00:00Overview
  • 01:10Safety Considerations
  • 02:14Charging the Vessel
  • 03:13Purging and Pressurizing the Vessel
  • 04:54Venting the Vessel
  • 05:37Summary

고압 반응로 용기의 작동

English

Share

Overview

로버트 M 리우, 펜실베이니아 주립 대학교, 유니버시티 파크, 펜실베이니아

합성 화학 실험실에서 가스의 사용은 매우 촉진적이고 원자 경제적 인 변환의 다양한 수행하는 데 필수적이다. 수소화, 산화 및 아미네이션과 같은 반응은 수소, 산소 및 암모니아와 같은 가스의 사용을 필요로합니다. 일반적인 반응성 솔루션에서 이러한 가스의 열악한 용해도로 인해 의미 있는 반응 속도를 달성하기 위해서는 고압이 필요합니다. 이러한 가스는 반응성이 높을 뿐만 아니라 고압을 사용하면 이러한 작업이 상당히 위험합니다. 고압의 사용에서 가장 큰 과제는 폭발성 혼합물과 폭주 반응의 형성을 피하기 위해 압력과 온도에 대한 면밀한 모니터링과 함께 반응의 전체 기간 동안 고압 가스의 봉쇄입니다.

이러한 반응은 전형적으로 두꺼운 벽의 압력 용기를 사용하여 수행됩니다. 가압 용기는 적절한 안전 문제가 완화된 고압에서 작동할 수 있습니다. 도 1은 고압 반응을 수행하는 데 사용되는 일반적인 압력 용기의 다양한 부분을 보여줍니다. 다음 프로토콜은 이러한 고압 반응기 선박의 안전한 작동 절차를 강조합니다.

Figure 1
그림 1. (a) 고압 반응기 용기의 일부. (b) 조립 된 고압 반응기 선박.

Procedure

고압 Parr 반응기(또는 이에 상응하는)의 작동은 대략 3단계로 세분화될 수 있다. 1. 충전 반응의 규모에 따라 적절한 이차 반응 용기를 선택합니다. 시험관, 에렌마이어 플라스크 또는 라운드 하단 플라스크는 적절한 반응 혈관의 몇 가지 예입니다. 용매가 압력 배출 중에 거품을 내는 경향이 있기 때문에 플라스크의 용매 수준 보다 충분한 헤드 공간을 유지해야 합니다….

Applications and Summary

The manipulation of gases at high pressure can be done with the use of a Parr reactor (or equivalent) vessel. Proper safety precautions should be observed while operating these vessels as they present an explosion hazard.

Transcript

The use of gases in the synthetic chemistry laboratory is essential for carrying out a variety of highly facile and atom economical transformations, and often require high pressures to ensure sufficient solubility of gases into the reactant solution.

Reactions such as hydrogenation, oxidation, and amination require the use of gases like hydrogen, oxygen, and ammonia, respectively. Due to the poor solubility of these gases in typical reactant solutions, high pressures are necessary to achieve a meaningful reaction rate. Therefore, high-pressure reactor vessels – thick-walled containers, typically made of stainless steel – are used to carry out such reactions. The pressurized vessel allows for operation at high pressure with appropriate safety concerns abated.

In this video, we will first review the safety considerations and then learn how to charge, purge, and vent a high-pressure reactor vessel.

High-pressure reactor vessels can maintain environments of 3,000 PSI and 500 degrees. Vessels rated for higher pressures require thicker walls, though, making temperature control more difficult.

The manufacturer’s limits must be maintained during operation, as the gases are highly reactive, as well as the high pressure being a hazard itself. In addition to temperature and pressure, capacity and corrosion resistance must also be kept in mind when setting up an experiment.

The reaction itself must also be considered, as some reactions, like Hydroformylation, produce heat or while others like the Haber-Bosch-Process result in gaseous products. Too much heat or gas formation could push the reactor outside its operating limits leading to an explosion.

With these safety considerations in mind, let’s see how to work with these vessels.

To begin the procedure, select a clean secondary vessel in which the reaction will take place. Depending on the reaction’s scale, this can be a test tube, Erlenmeyer, or round-bottomed flask.

Add the reactants along with a clean stirbar into the secondary vessel.

Place the pressure gauge assembly on top of the reaction vessel. Close the vent valve by turning it clockwise until finger tight.

Add the split rings onto the vessel, tightening diagonally opposite screws to seal the reactor. Do not tighten the screws all at once to ensure even pressure across the vessel.

Place the reactor inside the safety ring on the benchtop. Slide the ring over the split rings, and align the screw with the indent on the split ring.

Finger tighten the safety ring. With the reactor sealed, it is ready to be purged and pressurized.

The next step is to purge the affixed reactor with an inert gas. Attach the gas source to the reactor and open the main valve on the regulator.

Using the cylinder regulator set the pressure to approximately 1/3rd of the final required value. Slowly open the vent valve on the pressure gauge and pressurize the reactor.

When desired pressure is reached, close the valve to the autoclave, followed by the valve to the gas source on the regulator and the cylinder valve.

Slowly loosen the pressure line going into the reactor, so that the pressure in the reactor starts to fall. Once the pressure falls back to zero, close the pressure line again and open the main valve on the regulator to the gas source.

Repeat the previous process with 2/3rd of the final pressure.

Now adjust the pressure on the regulator to the final desired value and pressurize the reactor. Once the final pressure is reached, close the vent valve on the pressure gauge, and close the main valve on the gas regulator.

Carefully loosen the pressure line, so that the gas in the line and the regulator is vented. This ensures that the gas source is disconnected from the reactor, which is important, once chemistry has been initiated.

Set the outlet pressure on the cylinder regulator back to zero by loosening the pressure control valve. This ensures that gas will not leak, even if the main valve on the regulator is turned on by accident.

Now place the reactor in a fume hood and let the reaction run for the desired amount of time. The reactor can be heated if desired.

The next step is to safely vent the completed reaction. Once the reaction time has elapsed, cool the reactor to room temperature.

Then, slowly open the vent valve on the gauge to vent the gas from the reactor. Do this as slow as possible to avoid the solvent from spilling over in the reactor.

Once the pressure in the reactor has dropped to zero, loosen the safety ring and the screws on the split rings. Disassemble the split rings and remove the gauge from the reactor.

Collect the reaction vessel from the reactor. Rinse the reactor with water and the acetone. Leave it open to air dry.

You’ve just watched JoVE’s introduction to using high-pressure reactor vessels. You should now understand their function, and how to properly charge, pressurize, and vent one. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Operation of High-pressure Reactor Vessels. JoVE, Cambridge, MA, (2023).