Mechanisms Underlying Gut Hormone Secretion Using the Isolated Perfused Rat Small Intestine

This article has been accepted and is currently in production

Abstract

The gut is the largest endocrine organ of the body, producing more than 15 different peptide hormones that regulate appetite and food intake, digestion, nutrient absorption and distribution, and post-prandial glucose excursions. Understanding the molecular mechanisms that regulate gut hormone secretion is fundamental for understanding and translating gut hormone physiology. Traditionally, the mechanisms underlying gut hormone secretion are either studied in vivo (in experimental animals or humans) or using gut hormone-secreting primary mucosal cell cultures or cell lines. Here, we introduce an isolated perfused rat small intestine as an alternative method for studying gut hormone secretion. The virtues of this model are that it relies on the intact gut, meaning that it recapitulates most of the physiologically important parameters responsible for the secretion in in vivo studies, including mucosal polarization, paracrine relationships and routes of perfusion/stimulus exposure. In addition, and unlike in vivo studies, the isolated perfused rat small intestine allows for almost complete experimental control and direct assessment of secretion. In contrast to in vitro studies, it is possible to study both the magnitude and the dynamics of secretion and to address important questions, such as what stimuli cause secretion of different gut hormones, from which side of the gut (luminal or vascular) is secretion stimulated, and to analyze in detail molecular sensors underlying the secretory response. In addition, the preparation is a powerful model for the study of intestinal absorption and details regarding the dynamics of intestinal absorption including the responsible transporters.