Whole-Mount In Situ Hybridization in Zebrafish Embryos and Tube Formation Assay in iPSC-ECs to Study the Role of Endoglin in Vascular Development

* These authors contributed equally
This article has been accepted and is currently in production

Abstract

Vascular development is determined by the sequential expression of specific genes, which can be studied by performing in situ hybridization assays in zebrafish during different developmental stages. To investigate the role of endoglin(eng) in vessel formation during the development of HHT, morpholino-mediated targeted knockdown of eng in zebrafish are used to study its temporal expression and associated functions. Here, whole-mount in situ RNA hybridization (WISH) is employed for the analysis of eng and its downstream genes in zebrafish embryos. Also, tube formation assays are performed in HHT patient-derived induced pluripotent stem cell-derived endothelial cells (iPSC-ECs; with eng mutations) together with autologously corrected ECs. A specific signal amplifying system using the WISH method provides higher resolution and lower background signal than traditional methods. To obtain a better signal, the post-fixation time is adjusted to 30 min after probe hybridization. Because fluorescence staining is not sensitive in zebrafish embryos, it is replaced with diaminobezidine (DAB) staining here. In this protocol, hereditary hemorrhagic telangiectasia (HHT) patient-derived iPSC lines containing an eng mutation are differentiated into endothelial cells. After coating a plate with basement membrane matrix for 30 min at 37 °C, iPSC-ECs are seeded as a monolayer into wells and kept at 37 °C for 3 h. Then, the tube length and number of branches are calculated using microscopic images. Thus, with this improved WISH protocol, it is shown that reduced eng expression affects endothelial progenitor formation in zebrafish embryos. This is further confirmed by tube formation assays using iPSC-ECs derived from a patient with HHT. These assays confirm the role for eng in early vascular development.