Precise Brain Mapping to Perform Repetitive In Vivo Imaging of Neuro-Immune Dynamics in Mice

Video Coming Soon

Abstract

The central nervous system (CNS) is regulated by a complex interplay of neuronal, glial, stromal, and vascular cells that facilitate its proper function. Although studying these cells in isolation in vitro or together ex vivo provides useful physiological information; salient features of neural cell physiology will be missed in such contexts. Therefore, there is a need for studying neural cells in their native in vivo environment. The protocol detailed here describes repetitive in vivo two-photon imaging of neural cells in the rodent cortex as a tool to visualize and study specific cells over extended periods of time from hours to months. We describe in detail the use of the grossly stable brain vasculature as a coarse map or fluorescently labeled dendrites as a fine map of select brain regions of interest. Using these maps as a visual key, we show how neural cells can be precisely relocated for subsequent repetitive in vivo imaging. Using examples of in vivo imaging of fluorescently-labeled microglia, neurons, and NG2+ cells, this protocol demonstrates the ability of this technique to allow repetitive visualization of cellular dynamics in the same brain location over extended time periods, that can further aid in understanding the structural and functional responses of these cells in normal physiology or following pathological insults. Where necessary, this approach can be coupled to functional imaging of neural cells, e.g., with calcium imaging. This approach is especially a powerful technique to visualize the physical interaction between different cell types of the CNS in vivo when genetic mouse models or specific dyes with distinct fluorescent tags to label the cells of interest are available.