In JoVE (1)

Other Publications (6)

Articles by Frank Stuhmeier in JoVE

 JoVE Biology

Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy

1Photonics Group, Department of Physics, Imperial College London, 2Institute for Chemical Biology, Department of Chemistry, Imperial College London, 3MRC Clinical Sciences Centre, Hammersmith Hospital, 4Chemical Biology Section, Department of Chemistry, Imperial College London, 5Retroscreen Virology Ltd, 6Pfizer Global Research and Development, Pfizer Limited, Sandwich, Kent, UK, 7Centre for Histopathology, Imperial College London

JoVE 55119

Other articles by Frank Stuhmeier on PubMed

Experiences in Implementing UHTS--cutting Edge Technology Meets the Real World

Current Drug Discovery Technologies. Jan, 2004  |  Pubmed ID: 16472217

Driven by growing corporate compound files, the demands of target biology, and attempts to cut cost, the number of solutions to HTS has spiralled. In quick succession new assay technologies and screening platforms are appearing on the market, with the promise of screening faster than ever in low volume high density formats whilst providing high quality data. Within this world of rapid change, Pfizer has applied cutting edge technology to HTS by introducing screening in 1 microl formats utilising single molecule detection technology. Instead of resource intensive in-house development, Pfizer entered into a collaboration with Evotec OAI / Evotec Technologies and introduced their Mark-II EVOscreen platform. In this article we will outline the benefits of the approach taken at Pfizer, Sandwich, and introduce the Mark-II EVOscreen platform, illustrating the potential but also possible pitfalls of HTS miniaturisation.

NanoStore: a Concept for Logistical Improvements of Compound Handling in High-throughput Screening

Journal of Biomolecular Screening. Sep, 2005  |  Pubmed ID: 16103412

Small molecule screening, the systematic encounter of biology space with chemical space, has provoked the emergence of a whole industry that recreates itself by constant iterative improvements to this process. The authors describe an approach to tackle the problem for one of the most time-consuming steps in the execution of a screening campaign, namely, the reformatting of high-throughput screening test compounds from master plates to daughter assay plates used in the execution of the screen. Through an engineered storage procedure, they prepare plates ahead of the screening process with the respective compounds in a ready-to-use format. They show the biological inertness of the method and how it facilitates efficient recovery of compound activity. This uncoupling of normally interconnected processes provides time and compound savings, avoids repeated freeze-thaw cycles of compound solutions, and removes the problems associated with the DMSO sensitivity of certain assays types.

Design, Synthesis, and Pharmacology of Fluorescently Labeled Analogs of Serotonin: Application to Screening of the 5-HT2C Receptor

Journal of Biomolecular Screening. Apr, 2009  |  Pubmed ID: 19403919

Novel fluorescent derivatives of serotonin have been synthesized and used as tracers for the development of a 5-HT2C fluorescence polarization assay. Serotonin analogs that feature a fluorescent probe attached through an ether linkage at the tryptamine 5-position have high affinity for the 5-HT2C receptor, and affinity is dependent on both linker length and pendent dye. These variables have been optimized to generate Cy3B derivative 5a, which has 10-fold higher 5-HT2C affinity relative to serotonin (Kd=0.23 nM). In receptor activation experiments, 5a acts as a full agonist of 5-HT2C. Upon binding to 5-HT2C cell membranes, 5a shows a robust increase in fluorescence polarization (FP) signal. In an FP binding assay using 5a as a tracer ligand, Ki values for known 5-HT2C agonists and antagonists showed excellent agreement with Ki values from radioligand binding (r2=0.93). The FP ligand assay is suitable for high-throughput drug screening applications with respect to speed of analysis, displaceable signal, precision, and sensitivity to various reagents. A 384-well-based high-throughput assay that is rapid, economical, and predictive of test compounds' ability to bind to the 5-HT2C receptor has been compiled and validated.

FLIM FRET Technology for Drug Discovery: Automated Multiwell-plate High-content Analysis, Multiplexed Readouts and Application in Situ

Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. Feb, 2011  |  Pubmed ID: 21337485

A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated.

Fragment Based Discovery of a Novel and Selective PI3 Kinase Inhibitor

Bioorganic & Medicinal Chemistry Letters. Nov, 2011  |  Pubmed ID: 21925880

We report the use of fragment screening and fragment based drug design to develop a PI3γ kinase fragment hit into a lead. Initial fragment hits were discovered by high concentration biochemical screening, followed by a round of virtual screening to identify additional ligand efficient fragments. These were developed into potent and ligand efficient lead compounds using structure guided fragment growing and merging strategies. This led to a potent, selective, and cell permeable PI3γ kinase inhibitor with good metabolic stability that was useful as a preclinical tool compound.

Automated Fluorescence Lifetime Imaging Plate Reader and Its Application to Förster Resonant Energy Transfer Readout of Gag Protein Aggregation

Journal of Biophotonics. May, 2013  |  Pubmed ID: 23184449

Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z' factors exceeding 0.6 are realised for this FLIM FRET assay.

simple hit counter