Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Corpus Callosum: Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure.

The Split Brain

JoVE 10162

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

The study of how damage to the brain affects cognitive functioning has historically been one of the most important tools for cognitive neuroscience. While the brain is one of the most well protected parts of the body, there are many events that can affect the functioning of the brain. Vascular issues, tumors, degenerative diseases, infections, blunt force traumas, and neurosurgery are just some of the underlying causes of brain damage, all of which may produce different patterns of tissue damage that affect brain functioning in different ways. The history of neuropsychology is marked by several well-known cases that led to advances in the understanding of the brain. For instance, in 1861 Paul Broca observed how damage to the left frontal lobe resulted in aphasia, an acquired language disorder. As another example, a great deal about memory has been learned from patients with amnesia, such as the famous case of Henry Molaison, known for many years in the neuropsychology literature as "H.M.," whose temporal lobe surgery led to a profound deficit in forming certain kinds of new memories. While the observation and testing of patients with focal brain damage has provi


 Neuropsychology

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 2Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 3Departmento de Biologìa Celular, Universidad de Valencia, 4Institut de Biomedicina de la Universitat de Barcelona (IBUB), 5Department of Molecular and Translational Medicine, Fibroblast Reprogramming Unit, University of Brescia

JoVE 53282


 Developmental Biology

Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry

1Department of Materials Science and Engineering, Massachusetts Institute of Technology, 2Department of Biological Engineering, Massachusetts Institute of Technology, 3Department of Mechanical Engineering, Massachusetts Institute of Technology, 4Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School

JoVE 54201


 Neuroscience

Using Diffusion Tensor Imaging in Traumatic Brain Injury

JoVE 10276

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

Traditional brain imaging techniques using MRI are very good at visualizing the gross structures of the brain. A structural brain image made with MRI provides high contrast of the borders between gray and white matter, and information about the size and shape of brain structures. However, these images do not detail the underlying structure and integrity of white matter networks in the brain, which consist of axon bundles that interconnect local and distant brain regions. Diffusion MRI uses pulse sequences that are sensitive to the diffusion of water molecules. By measuring the direction of diffusion, it is possible to make inferences about the structure of white matter networks in the brain. Water molecules within an axon are constrained in their movements by the cell membrane; instead of randomly moving in every direction with equal probability (isotropic movement), they are more likely to move in certain directions, in parallel with the axon (anisotropic movement; Figure 1). Therefore, measures of diffusion anisotropy are thought to reflect properties of the white matter such as fiber density, axon thickness, and degree of myelination. One common measure is fractional anisotropy


 Neuropsychology

Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination

1Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 2Department of Pathology, University of Alabama at Birmingham, 3Department of Neurobiology, University of Alabama at Birmingham, 4Center for Glial Biology and Medicine, University of Alabama at Birmingham

JoVE 54348


 Immunology and Infection

Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

1Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 2Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 3Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 4Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, 5Biological and Biomedical Sciences Program, University of North Carolina School of Medicine, 6Department of Radiation Oncology, Emory University School of Medicine, 7Department of Neurology, Neurosciences Center, University of North Carolina School of Medicine

JoVE 51763


 Neuroscience

State of the Art Cranial Ultrasound Imaging in Neonates

1Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, 2Department of Radiology, Erasmus MC-Sophia Children's Hospital, 3Department of Pediatrics, Division of Neonatology, UZ Brussel, 4Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, 5Department of Pediatrics, Division of Neonatology, Isala Hospital, 6Department of Pediatrics, Koningin Paola Children's Hospital

JoVE 52238


 Medicine

Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly

1LC Campbell Cognitive Neurology Research Unit, Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Brain Sciences Research Program, Sunnybrook Health Sciences Centre, 2Department of Medicine (Neurology), Institute of Medical Science, University of Toronto

JoVE 50887


 Medicine

Fiber Connections of the Supplementary Motor Area Revisited: Methodology of Fiber Dissection, DTI, and Three Dimensional Documentation

1Department of Neurosurgery, University of Minnesota, 2Department of Neurosurgery, Barrow Neurological Institute, St. Josephs Hospital and Medical Center, 3Department of Radiology, University of Alabama at Birmingham, 4Department of Radiology, University of Minnesota, 5Department of Neurosurgery, Tepecik Training and Research Hospital, 6Department of Neurosurgery, Cerrahpasa Medical School, University of Istanbul

JoVE 55681


 Neuroscience

An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging

1Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 2Department of Information Engineering, University of Florence, 3Department of Engineering, Roma Tre University, 4FTMTR&D/SPA, STMicroelectronics, 5Brain Connectivity Center, BCC, Istituto Neurologico Nazionale Fondazione C. Mondino I.R.C.C.S., 6Department of Molecular Medicine - Unit of Pathology, University of Pavia, Foundation IRCCS Policlinico San Matteo

JoVE 55798


 Bioengineering

A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain

1Division of Neurotoxicology, National Center for Toxicological Research, 2Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, 3Office of Planning, Finance, and Information Technology, National Center for Toxicological Research

JoVE 4285


 Neuroscience

A Novel Strategy Combining Array-CGH, Whole-exome Sequencing and In Utero Electroporation in Rodents to Identify Causative Genes for Brain Malformations

1University of Florence, 2INSERM INMED, 3Aix-Marseille University, 4Plateforme Biologie Moléculaire et Cellulaire INMED, 5Royal Children's Hospital, 6Murdoch Children's Research Institute, 7University of Melbourne, 8Plateforme postgenomique INMED, 9University of Pavia, 10Wellcome Trust Centre for Human Genetics, 11Oxford Radcliffe NHS Trust, 12IRCCS Casimiro Mondino Foundation, 13Research Institute of Molecular Pathology, 14IRCCS Stella Maris, 15Columbia University

JoVE 53570


 Neuroscience

Assessment of Dopaminergic Homeostasis in Mice by Use of High-performance Liquid Chromatography Analysis and Synaptosomal Dopamine Uptake

1Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and Department of Neuroscience and Pharmacology, University of Copenhagen

JoVE 56093


 Neuroscience

Utilizing 3D Printing Technology to Merge MRI with Histology: A Protocol for Brain Sectioning

1Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, 2Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, 3Viral Immunology Section, National Institute of Neurological Disorders and Stroke

JoVE 54780


 Neuroscience

Use of a Piglet Model for the Study of Anesthetic-induced Developmental Neurotoxicity (AIDN): A Translational Neuroscience Approach

1Department of Anesthesiology, Ohio State University College of Medicine, 2Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, 3Department of Anaesthesia and Critical Care Medicine, University of Toronto, 4Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, 5Department of Pathology and Anatomy, Ohio State University College of Medicine, 6Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital

JoVE 55193


 Medicine

Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

1Elemental Bio-imaging Facility, University of Technology Sydney, 2Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 3Department of Pathology, The University of Melbourne, 4School of Earth Sciences, The University of Melbourne, 5Research School, Ruhr University, 6Department of Physiology, Monash University, 7ESI Ltd., Bozeman, 8Agilent Technologies, Mulgrave

JoVE 55042


 Medicine

12
More Results...