We developed a software platform that utilizes Imaris Neuroscience, ImarisXT and MATLAB to measure the changes in morphology of an undefined shape taken from three-dimensional confocal fluorescence of single cells. This novel approach can be used to quantify changes in cell shape following receptor activation and therefore represents a possible additional tool for drug discovery.
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology1 even in complex tissue sections2. Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking.
Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells3, however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1).
We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
1. Three-dimensional Morphometric Analysis of Single-cell Phenotypic Changes
2. Representative Results
To demonstrate the power of our approach, we quantified the cellular changes that result from the interaction of G protein-coupled receptors (GPCRs) and corticotropin releasing factor receptor-2 (CRF-R2) with its endogenous ligand CRF in transfected HEK293 cells.
We show that CRF-R2 receptors are located in the plasma membrane and project from finite regions of the membrane of the cells (Figure 2A and Movie 1). Using conventional 2D analysis, it is possible to detect this subset of extracellular CRF-R2 receptors only if we analyze the receptor adhesion points on the glass covers. Consequently we lose any other information derived from z-stacked multispectral data (Figure 5).
When the cells are treated with CRF, the extracellular receptors are greatly reduced, as shown by the decrease in distance of the spots from the plasma membrane. They are also redistributed from primarily finite locations into a number of discrete locations (Figure 2B and Movie 2).
The effect of CRF on receptor membrane distribution is prevented by pretreatment with the CRF-R2 specific antagonist, antisavagine 30 (AS-30) and we find that the CRF-R2 extensions do not change (Figure 2C and Movie 3).
The distal distribution of spots, plotted in the 5 μm spectrum-color coded intervals, is utilized to visualize the distance of the voxels from the nuclear membrane. No treatment and antagonist pretreatment (AS-30, 1 μM, 30 min) before agonist treatment (CRF, 1 μM, 30 min) show no significant (n.s.) difference in GPCR contraction. Treatment of the cells with the agonist (CRF, 1 μM, 30 min) progressively reduces the number of CRF-R2-containing voxels when compared to no treatment, 0-5 μm (n.s.), 6-15 μm (**p<0.01) and >15 μm (***p< 0.005), or compared to AS-30 treatment, 0-10 μm (n.s.), 11-15 μm (**p<0.01) and >15 μm (***p< 0.005) (Figure 4).
Figure 1 . Diagram of the current available techniques and their limitation to analyze fluorescence images. Click here to view larger figure.
Figure 2. 3D multispectral fluorescence images of HEK293 transfected cells with HA-CRF-R2 before and after agonist and antagonist treatment. Merged images showing HA-CRF-R2-probed using anti-HA and visualized using Alexa 488 conjugated anti-mouse (IgG1) secondary antibody; DAPI was used to visualize the nuclei. The images were acquired with confocal laser scanning (CLS) microscope. Scale bar 5 μm.
Figure 3. 3D model of HEK293 transfected cells with HA-CRF-R2 reconstructed from CLS images using Imaris software. Surface rendering of the nucleus and spots creation describing GPCR extensions converted to small vesicles. The fluorescence data were first processed using Imaris which allows the visualization and segmentation of 3D microscopy data set. Then, Imaris XT was utilized to interface Imaris with MATLAB. The voxel intensities were exchanged into spot coordinates. The spots spectrum-coded color (blue 0-5 μm, green, 6-10 μm, yellow 11-15 μm and red >15 μm) represent the distance form the nuclear membrane. Scale 5 μm.
Figure 4. Graphic representation of the distal distribution of spots plotted in the spectrum-color coded in 5 μm intervals is utilized to visualize the distance of the voxels from the nuclear membrane. No treatment and pretreatment with an antagonist (AS-30, 1 μM, 30 min) before agonist treatment (CRF, 1 μM, 30 min) show no significant (n.s.) difference in GPCR contraction. Treatment of the cells with agonist (CRF, 1 μM, 30 min) progressively reduces the distance of the number of CRF-R2-containing voxels when compared to no treatment 0-5 μm (n.s.), 6-15 μm (**p<0.01) and >15 μm (***p< 0.005); or AS-30 treatment 0-10 μm (n.s.), 11-15 μm (**p<0.01) and >15 μm (***p< 0.005).
Figure 5. Limitation of the 2D morphometric analysis of HEK 293 transfected cells with HA-CRF-R2. The mid-plane section of cells (3-4μm above the glass coverslip) showing the center of the nuclei visualized with DAPI and HA-CRF-R2 probed using anti-HA and visualized using Alexa 488nm conjugated anti-mouse (IgG1) secondary antibody and acquired with CLS shows no difference between (A) no treatment (NT) and (B) agonist (CRF, 1 μM, 30 min), while the receptor adhesion points are dramatically different.
Movie 1. Freely rotating 3D model in the “Surpass” mode of HEK 293 transfected cells with HA-CRF-R2, no treatment, to evaluate cellular phenotype differences among receptor proteins. Scale bar from 5 to 20 μm. Click here to view movie.
Movie 2. Freely rotating 3D model in the “Surpass” mode of HEK 293 transfected cells with HA-CRF-R2, agonist treatment, CRF (CRF, 1 μM, 30 min) to evaluate cellular phenotype differences among receptor proteins. Scale bar from 5 to 20 μm. Click here to view movie.
Movie 3. Freely rotating 3D in the “Surpass” mode of HEK 293 transfected cells with HA-CRF-R2, pretreatment with an antagonist (AS-30, 1 μM, 30 min) before agonist treatment (CRF, 1 μM, 30 min) to evaluate cellular phenotype differences among receptor proteins. Scale bar from 5 to 20 μm. Click here to view movie.
We showed that CRF treatment induced a significant change in the morphology and location of CRF-R2. The change in CRF-R2 was inhibited by selective antagonist treatment. We showed that receptor modifications were not detected and cannot be measured using the standard 2D multispectral techniques. The ability to study complex 3D images is critical to incorporate the complexity of biological parameters for morphometric analysis. We were able to make 3D measurements of cells without a pre-defined shape with inconsistent fluorescence network components. Our suite of user-modifiable automated methods enables us to quantify molecular dynamics in individual amorphous-shaped cells in their environment in order to extract information about cell dynamics. This tool can help to make predictions about the effects of a pharmacological compound on cellular pathways and cellular morphology alteration in the presence of inhibitors and provide information about cell survival.
The advantage of our 3D quantification method is that it allows researchers with extensive expertise in biology mechanisms, but not familiar with computer codes, to interface microscopy techniques with computer applications. We made single-cell measurements in order to reveal information that reflects a population of cells6. Single-cell measurement provides us with an analysis of a complex shaped cell unperturbed by proximity with other cells. This method will aid scientists in investigating changes in cell shape and the location of membrane-bound proteins after chemical stimualtion7, 8. The analysis of a cell should include data from the cellular inner core compartments to its extracellular extremities. The maximum data inclusion that can be obtained from a 2D image is across the mid-plane of a cell; however, the nucleus and the outermost location of the plasma membrane are positioned on different z-planes; 2D visualization truncates the image. As the nucleus is located between 3 and 4 μm above the cellular adhesion points, which are located on the glass coverslip, an extended amount of data are lost. This receptor spatial reorganization can only be seen in 3D images, and is not able to be quantified without the analysis. This tool provides a novel approach to visualize and measure cellular changes that are not detected using traditional 2D analytical techniques, providing information that addresses the cellular system as a whole instead of fragmented by 2D data. This approach to measuring single cells together, with other described technologies9, allows us to investigate the complexity of cellular dynamics and the basis of cellular plasticity.
This method is not confined to Imaris and can be applied to any data visualization software interfaced with computing language software. Future improvements to the system will include morphometric analysis of 3D cells taken from living cells to permit the examination of the entire cell in its natural state without chemical fixation or chemical staining. Acquiring images of living cells will also eliminate intercellular variability, since we can quantify phenotypic measurements in the same cell over time.
We believe our platform technology, with its potential to measure structures of unspecified shaped-cells, will help other scientists to fill a gap in quantification imaging techniques. This novel approach is applicable to the characterization of numerous single cell phenotypic changes, making this cell-based assay, as other single-cell profiling10, an additional tool for the drug discovery process. Since cell morphology has already been utilized in high-throughput screening for identifying small molecule inhibitors11, as this platform evolves, we expect this method to be useful for determining a dose-response curve from single cells that affect the same pharmacological target but with different mechanisms of action.
The authors have nothing to disclose.
We thank the Biological Imaging Development Center (BIDC) University of California, San Francisco for the use of the Imaris, Imaris XT and Matlab. We thank V. Kharazia for the technical assistance and A.T. Henry, L.K. Floren, L. Daitch for their contributions to the editing of the manuscript. This work was supported by funding from the State of California Medical Research on Alcohol & Substance Abuse through UCSF to SEB, the National Institutes of Health: 1R21DA029966-01 and NIH Fast Track award to screen the MLSMR collection to SEB, UCSF School of Pharmacy (Dean’s Office and Clinical Pharmacy) and the School of Medicine (Clinical Pharmacology & Experimental Therapeutics) to CLHK.
Name of the reagent | Company | Catalogue number | Comments (optional) |
Human Embryonic Kidney (HEK293) | American Type Culture Collection | CRL-1573 | |
Dulbecco’s Modified Eagle Medium (DMEM) | Invitrogen | 11965118 | |
Fetal Bovine Serum (FBS) | Invitrogen | SH30070.03 | |
AlexaFluor-488 (IgG2b) | Invitrogen | A-11001 | |
monoclonal anti-HA.11 (IgG1) | Covance | 16B12 | |
DAPI | Vector Laboratories | H-1200 | |
CRF | Sigma | C2917 | |
Antisauvagine-30 (AS-30) | Sigma | A4727 |