Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Environment

トウモロコシとテオシンテ線における ウスチラゴ の病原性を評価するための迅速かつ効率的な方法

Published: January 3, 2014 doi: 10.3791/50712

Summary

メズおよびテオシンテ植物を生物栄養病原体 ウスチラゴメイディス で接種する注射法の使用について説明する。 針注射接種方法は、病原体がアプリソリアの形成を通じて植物に入る植物葉の間の真菌病原体の制御された送達を促進する。この方法は非常に効率的で 、U.maydisで再現可能な接種を可能にします。

Abstract

トウモロコシは世界中の主要な穀物作物です。しかし、生物栄養病原体に対する感受性は、生産性を高めるための主要な制約である。 U.maydis は、トウモロコシの生物栄養真菌病原体およびトウモロコシスムートの因果剤である。この病気は、米国で年間約10億ドルの著しい収量損失を引き起こします1 作物の回転を含むいくつかの方法, 殺菌剤の適用と種子治療は、現在、トウモロコシのスマットを制御するために使用されています2.しかし、ホスト抵抗は、トウモロコシスマットを管理するための唯一の実用的な方法です。種々の生物栄養病原体に耐性のあるトウモロコシ、小麦、米などの作物植物の同定は、毎年3〜5の収量損失を著しく減少させている。したがって、植物葉間で病原体を効率的かつ再現的に送達する病原体接種方法を用いることは 、U.maydisに耐性のあるトウモロコシ株の迅速な同定を容易にするであろう。として 、U.maydisに耐性のあるトウモロコシラインを識別するための第一歩として、ニードル注射接種法および抵抗反応スクリーニング方法を利用して、トウモロコシ、テオシンテ、トウモロコシxテオシンテイントログレスラインを U.maydis 株で接種し、耐性植物を選択した。

トウモロコシ、テオシンテ及びトウモロコシxテオシンテ内線は、約700の植物からなる、植え付け 、U.maydisの株で接種し、抵抗性をスクリーニングした。接種およびスクリーニング方法は 、U.maydisに耐性のある3つのテオシンテ線を同定することに成功した。ここでは、トウモロコシ、テオシンテ、及びトウモロコシxテオシンテイントログレスラインの詳細な注射接種及び抵抗反応スクリーニングプロトコルが提示される。この研究は、針注射接種が植物の葉の間に U.maydis を効率的に供給できる農業における貴重なツールであり、現在組み合わせることができ、改善された疾患耐性のための繁殖プログラムでテストすることができる U.maydis に耐性のある植物ラインを提供していることを示しています。

Introduction

植物の真菌病は、農業に対する最も重要な脅威の1つを表しています。世界人口の増加に伴い、食のニーズが高まる中、耐病性の向上を伴う作物の開発が必要とされています。植物病原体は自然に作物収量に悪影響を与える疾患を引き起こすフィールドの作物植物に感染する 6.耐性植物を同定し、利用することは抵抗を改善し、収量損失を減少させることができることが示されている。植物病原体を植物に接種し、耐性ライン7を選択することにより、トウモロコシ、小麦、米、ソルガムを含む多くの植物種において耐性品種が同定されている。したがって、効率的な接種方法の開発と使用は、多くの植物を接種し、抵抗性のためにスクリーニングすることを可能にするであろう。浸入接種、病原体細胞懸濁培養を植物の渦にピペット化、注射注射8~11の注射など様々な接種方法が用いられている。各方法を用いて、病原体は、病原体の発達と植物感染確実に行うために、アプレソリアの形成を通じて植物に入る植物葉の間に確実に導入されなければならない。

浸潤接種法は、植物苗を病原体細胞懸濁培養物に浸入することを含み、ピペット法では病原体細胞懸濁液を植物苗の渦に入れる必要がある。ただし、両方の方法に問題があります。第一に、どちらの方法も、葉表面から植物組織への病原体の自然な動きに依存する。ほとんどの病原体は、自然に植物の葉表面に口孔や傷を介して植物に入ります.しかし、植物の葉表面を通して植物葉表面を貫通する病原体能力や葉表面の創傷には大きなばらつきがある。したがって、病原体の浸透は、いずれの接種方法でも制御できず、データの一貫性がなくなる可能性があります。第二に、多数の植物をスクリーニングする場合、苗を病原体細胞懸濁培養物に浸すと時間がかかり、スクリーニングできる植物の数を制限する可能性がある。逆に、本明細書に記載の針注射接種プロトコルは、アプレッサリア14の形成を促進する植物葉間の病原体細胞懸濁培養を送達する。病原体は、次に、新たに開発されたアプレッサリアを利用して、病原体の侵入問題を排除する植物に入ります。さらに、針注射接種プロトコルは、メイズおよびテオシンテ植物に対して 、U.maydis を接種し、良好な感染を示す様々なフェノタイプを提供する。この表現型は、異なる実験内および実験間で一貫した植物表現型をもたらす病原体細胞懸濁液培養に最適な濃度を決定するためのマーカーとして使用することができる。

病原体細胞懸濁液培養による植物接種後、植物は通常、8-11,15の耐性または感受性表現型を検出するためにスクリーニングされる。疾患評価尺度は植物の型をスクリーニングし、分類するために広く使用されているが、評価尺度は分析される病原体によって異なる。したがって、 米国メイディス およびトウモロコシ相互作用に対する疾患評価尺度プロトコル確立は、同様の真菌病原体16に利用することができる。

本シリーズのプロトコルは、 メイ ズ細胞懸濁液培養およびトウモロコシ、テオシンテ、およびトウモロコシxテオシンテイントログレスラインの疾患耐性反応スクリーニングによる針注射接種を詳述している。本プロトコルは、トウモロコシ植物への U.maydis の注射の針に限定されるものではなく、比較的あらゆる真菌病原体および植物種に利用することができる。したがって、同じプロトコルに両方の方法の詳細を含めると、研究者は接種とスクリーニングのためのプロトコルを直接利用したり、元のプロトコルを操作して目的の病原体および植物種により適合することができます。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 植物材料の成長

  1. 接種とスクリーニングのための植物ラインを選択します。この作業には、2つのトウモロコシライン、5つのテオシンテライン、および40のトウモロコシxテオシンテ線が、この作業に使用された。
  2. 実験用植物種子(U.maydis 注射)および制御(水注入)針注入接種実験。各プラントラインに対してこれを行います。
  3. 小さなフラットに各植物ラインの4つの種子(複製)を植える指で約1/2インチの種子を土に押し込み、軽く土で覆う(図1A 1B)。土を種の上に詰めないでください。種を深く植えたり、種の上に土を詰め込んだりすると、苗の出現に問題が生じる可能性があります。
  4. 種子を土に水を入れます。土壌が浸され、種子が水を浸した後も土壌の下に残っていることを確認してください。
  5. 水をやった後、昼と夜の環境で植物を配置し、昼と夜の環境は28/20°Cの温度と14/10時間の光周期、キャノピーの上部に約500 μmol/m2  の光合成活性放射線。昼夜の相対湿度を、それぞれ約70%と90%に保つ。
  6. すべての植物を同じ成長室に保管して、実験全体で一致する成長環境を維持します。
  7. 10日後、成長チャンバーから植物を取り出し、針注射接種法を用いて U.maydis 細胞懸濁液培養で植物を接種する。注:トウモロコシ植物は、植え8-10の7日後に接種することができます。しかし、テオシンテ植物は7日後には小さすぎる。したがって、実験内で一貫性を保つため、植え付けの10日後にトウモロコシとテオシンテ植物の両方を接種する(ステップ2.12参照)。

2. 針注射接種

  1. すべての作業は、ラミナーフローフードで行います。冷凍庫の貯蔵から U.メイディス グリセロールストックを除去します。ジャガイモのブドウ糖アガー(PDA)プレートに、無菌ループおよびストリークグリセロールストックを 使用して、野生 型菌株1/2(交配型a1b1)と2/9(交配型a2b2、アイソジェニックに近い1/2)を使用します。株を別々に維持します。
  2. PDAプレートを30°Cインキュベーターに 2日間、U.maydis で縞に入れてください。異なる生物栄養病原体を使用する場合は、適切な株、培地および成長条件を使用する。2日間の病原体の成長を監視して 、U.maydis 株が良好に成長していることを確認します。
  3. 2日後にインキュベーターからPDAプレートを取り出します。プレートは、良好な病原体の成長を有し、単一のコロニーを含む必要があります (図 2A).単一のコロニーを得ることが重要です。単一コロニーが存在しない場合は、より低い濃度でプレートを再縞する。
  4. ラミナーフローフードですべての作業を行います。PDAプレートから各株のための単一のコロニーを選択するために無菌爪楊枝を使用してください。1つのコロニーを含む爪楊枝を3mlポテトデキストローススープ(PDB)に入れる。2-3の文化を持つことをお勧めします。
  5. 3ml PDB培養物を30°Cインキュベーター/シェーカーに200rpmで2日間置きます。2日間の培養の成長を監視し、文化の成長を確実にします。カルチャは非常に曇っているように見えるはずです。
  6. インキュベーター/シェーカーから液体培養液を取り出し、OD600で濃度を測定し、細胞が1.0(〜1 x 107細胞/ml)のODに成長したことを確認した。
  7. U.maydis細胞懸濁液培養液を、最終的な30ml培養量の水を使用して、1 x 106細胞/mlの最終濃度に持ち込みます。この濃度は、一貫して病原体細胞懸濁液培養で植物の良好な感染をもたらす。17

注: 様々な細胞懸濁液濃度は、接種に必要な適切な細胞の標的を決定するために異なる病原体株を使用する場合にテストする必要があります18,19.細胞懸濁液培養に対する与えられた最終濃度は、ちらつきの出発点として使用することができる。病原体細胞懸濁液培養の適切な濃度は、良好な感染を有する植物表現型を可視化することによって検証されるべきである(図3A-E)。

  1. 接種前に2つの U.の 同量を混合する。1つの病原菌株を使用する場合は、ステップ2.9に進む。各接種実験に対して新鮮な U.maydis 細胞懸濁液培養液を調製し、2日後に細胞懸濁培養を廃棄する。
  2. 実験的な注射接種のために、細胞懸濁液培養液を注射器に引き込み 、U.maydis 細胞懸濁液で3mlシリンジを充填する。
  3. 制御針注射接種の場合、3mlシリンジを水17で満たす。実験用注射接種に同じ手順を使用してください。
  4. 各3 ml シリンジの端に0.457 mm x 1.3 cmの皮下注射針を取り付けます。選択された針のサイズは植物のティッシュへの最低の損傷と植物葉の間の細胞懸濁液の培養を提供する。
  5. 注射の注射に備えて植え付けの10日後に成長室から実験および制御植物を取り除く(図2B)(ステップ1.7を参照)。
  6. U.maydis細胞懸濁液培養液を含む皮下注射針を、土壌ラインのすぐ上の90°の角度で実験プラントの茎に慎重に挿入します。針が茎の真ん中に入るまで挿入します。針をステム(図2C)に押し込んではいかない。
  7. 実験プラントに約100μlの U.maydis 細胞懸濁液培養18,19を注入する。これは苗の高さによって若干異なります。細胞懸濁液は茎を押し通し、植物の渦に移動します。細胞懸濁液は、植物の渦中に見える。3 ml シリンジが空になるまで、各植物に細胞懸濁液培養液 100 μl を注入し続けます。
  8. 注射後、慎重に植物茎から針を取り除きます。今空の3 mlシリンジから針を取り出し、水で満たします。針を注射器に戻し、針先に引っ掛かるかもしれない植物組織を取り除くために針を通して水を押します。
  9. 各実験プラントについて、手順 2.9 ~2.15 を繰り返します。水を注入することにより、制御プラントの同じプロトコルに従ってください。
  10. 接種した実験および制御プラントを成長室に戻します。植物組織ではなく土壌を湿潤させることによって植物に毎日水を与える。
  11. 病原体の開発と植物抵抗反応を検出するために毎日植物をチェックしてください。

3. 抵抗反応スクリーニング

  1. 1~5抵抗反応評価スケールを用いて、接種後(dpi)後の各植物の抵抗反応をスコア付けして記録します。格付けスケール上の数値が増加するにつれて疾患の重症度が増加する(表2)。1C(葉緑化)、1A(葉アントシアニン産生)、または2(小葉の胆汁)抵抗性反応は抵抗性を示す。A 3 (茎の胆汁)、4(基底胆汁)、または5(植物死)抵抗反応は感受性を示す(図3A-Eおよび表2)18,19。
  2. 実験と制御植物の両方をスコアし、抵抗反応評価を記録します。
  3. 実験プラントと制御プラントの抵抗反応を比較します。1C、1A、または2の抵抗反応評価を有する実験プラントを選択します。これらの植物は 、U.maydis18,19に耐性であると考えられています。
  4. 実験全体を繰り返して、植物の表向きを確認します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

針注射の接種に成功した場合、U.maydis(実験)で接種された植物の表現型を可視化することによって決定することができる。実験植物の大部分は、U.maydis感染の影響を受けやすかった。この影響を受けやすい植物は、黒色の管門を有する茎および基底胆汁形成によって示される非常に重篤な疾患の発症を示した(図3Dおよび3E、表2)。いくつかの植物は、病気の重症度のために接種後に死亡した。米国メイディスに耐性のある3つのトウモロコシxテオシンテ内線が同定された。U.maydisに耐性のある植物については、軽度クロロシス、アントシアニン産生またはマイナー葉の胆汁形成によって成功した接種が実証された。(図3A-Cおよび表2)

実験植物について観察された表現型が接種の結果であることを確認するために、実験植物と対照植物の表現型(水接種)を比較した。実験植物は、上記のように、抵抗性および感受性の植物について葉および/または茎領域上の病原体の発達を示した。逆に、対照植物は表現型を実証しなかった。コントロール植物は非常に清潔で、植物のどの部分でも病原体の発達を示さなかったので、実験植物の病原体の発達は U.maydisによる針注射接種によるものであった。

針注射接種方法の再現性と効率を検証するために、実験を700の植物からなる2回行い、各植物ラインの実験の中および間の実験の実験の抵抗反応スコア(フェノタイプ)を比較した。1つの実験内の同じ植物ラインからの4つの複製植物は、植物の99.8%に対して同じ抵抗反応スコアを示した。さらに、4つの複製植物を実験間で比較し、植物の99.4%が同じ抵抗反応スコアを示したことを示した。これは、針注射接種方法が植物葉の間で U.maydis 細胞懸濁液培養を効率的に送達することができ、接種および模倣タイプが実験の内外で一貫していたことを示唆している。

Figure 1
図 1.接種のために植えられたトウモロコシの種子。A)6つのトウモロコシの種は、植え付けのために土壌の上に配置。 B)種子を指で土に1/2インチ押し込みます。

Figure 2
図 2.針注射接種プロセスのフローチャート。)30°C Bで2日間のインキュベーション後にPDAプレートに縞が付く可能性のある米国の成長)成長室から取り除かれた10日齢の苗を単量培養した平ら。C)100μlのU.maydis細胞懸濁液培養を用いた10日齢の苗の茎に注射針を注入する。

Figure 3
図 3. U.メイディス 針注射接種に対する植物のフェノチピカル応答。A)葉に白い筋が示すマイナーな葉のクロロシスを有する耐性テオシンテ植物。表現型は、1C抵抗性反応評価スコアに対応する。 B)紫色の葉色で示されたアントシアニン生産を有する耐性テオシンテ植物。表現型は1A抵抗反応評価スコアに対応する。 C)マイナーリーフ胆汁の開発と耐性テオシンテ植物。表現型は2抵抗反応評価スコアに対応する。 D)重度の茎胆汁の発生と黒のテリオスポアを有するトウモロコシ植物を感受性。表現型は3抵抗反応評価スコアに対応する。 E)深刻な基底胆汁の発生を有するトウモロコシ植物の影響を受けやすいトウモロコシ植物。表現型は4抵抗反応評価スコアに対応する。表 2の抵抗反応評価尺度および疾患症状に対応する現象型。 ここをクリックすると、より大きな図が表示されます

プラントライン 植物種 抵抗応答
1. ゼア・メイズ (NSL 30060) トウモロコシ 耐性
2. ゼアは、サブスプ (PI511562) テオジンテ 受け やすい
3. ゼアはパルビグリュミをサブスプ テオジンテ 受け やすい
4. ゼアは、サブスプ. ディプロペレニス テオジンテ 耐性
5. ゼアはルクスリアンをサブスプ テオジンテ 耐性
6. B73 (P1) トウモロコシ 受け やすい
7. パルヴィリュミ (P2) テオジンテ 受け やすい
8. Z031E0560 トウモロコシ×テオジンテNIL 耐性
9. Z031E0560 トウモロコシ×テオジンテNIL 耐性
10. Z031E0068 トウモロコシ×テオジンテNIL 耐性
11. 37 トウモロコシ×テオシンテNIL トウモロコシ×テオシンテのニルス 受け やすい

表 1.メイズとテオジンテ線の抵抗応答は 、U.maydisで接種した. P1 は、NI の親を示します。P2 は、NI の親を示します。NILは、近いアイソジェニックラインを示します。

ホスト応答 疾患評価* 病気の症状*
耐性 1C 塩素領域が少なく、胆汁の形成もない。
耐性 1A 濃い紫色のアントシアニン生産、いくつかの胆汁形成。
耐性 2 マイナーな葉の胆汁。
受け やすい 3 黒色の茎孔の形成と重度の茎の胆汁.
受け やすい 4 黒い管内孔の形成を伴う大きな基底胆汁
受け やすい 5 重度の葉、茎、基礎胆汁を持つ植物の死。

表 2. 米国のメイディス スコアリングに使用される抵抗反応評価システム。 *評価と病気の症状は 図3の現象に対応しています。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

本研究では、700トウモロコシとテオシンテ植物の茎に U.maydis の株を送達するために使用される針注射接種方法が成功した。さらに、改訂された疾患耐性評価尺度を使用して、植物をスクリーニングし、病原体の発達を検出した。両方の方法を使用した結果 、U.maydis に耐性のある植物ラインが700トウモロコシとテオシンテ植物の間で同定され、現在は組み合わせることができ、改善された耐病性のための繁殖プログラムでテストすることができます。

ほとんどの接種方法と同様に、同じラインから植物の間で同じ抵抗表現型を再現する能力が不可欠です。さらに、同じ抵抗性の型は、少なくとも2つの別々の実験20,21で観察されなければならない。植物表現型を得る能力は、耐性であるか、影響を受けやすいかにかかわらず、主に病原体が植物組織にアクセスする能力によって決定されるので、各接種を離れる植物の間に病原体を送達する接種方法を選択することが非常に重要である。 研究者がU.maydis などの生物栄養真菌病原体を用いた針注射接種方法に直面している一般的な問題のいくつかは、1)接種に使用される真菌病原体の不適切な濃度、2)複数の実験における再現性表現型の欠如、および3)確立された抵抗反応スコアリング方法の欠如である。ここでは、それぞれの問題に個別に対処します。

接種に用いられる真菌病原体細胞懸濁液培養物の適切な濃度を決定することが重要である8-11,22.高濃度の病原体細胞懸濁液培養による接種は、耐性植物と感受性のある植物の両方の死を引き起こすが、低濃度はどちらの植物型にも表現型を示さない。しかし、接種に使用される真菌病原体細胞懸濁液の適切な濃度は、病原体、病原体株、植物種、および植物の加盟を含むいくつかの要因によって異なる。本プロトコルは、針注入接種のためのタイターを試験するための出発点として使用される U.maydis 細胞懸濁液培養のための表現型および濃度を提供する。これにより、異なる実験内および実験間で一貫した植物の型が得られます。 U.メイディス 接種に使用される細胞懸濁培養濃度は、他の生物栄養真菌病原体との接種の開始濃度としても使用することができる。他の生物栄養真菌病原体を使用する場合、病原体細胞懸濁液培養の異なる希釈を試験することが推奨される。これにより、接種に使用される病原体細胞懸濁液培養に最適な濃度の選択が容易になります。

多くの植物は、典型的には、潜在的に関心の病原体に耐性植物を識別するために植物集団から接種し、スクリーニングされなければならない6,23.そのため、植物葉の間に病原体細胞懸濁培養液を確実に送達し、植物の操作が比較的容易かつ少ない方法で行われる接種方法を利用することが重要である。これにより、複数の実験で再現可能な型が容易になります。本プロトコルは、マイズおよびテオシンテ植物の茎における針注射接種の詳細な概要を 、U.maydis 細胞懸濁液培養で与える。この方法は、トウモロコシやテオシンテに類似した他の植物種の接種にも使用できます。植物に病気を引き起こすためには 、U.maydis は植物組織7,21,24に移動しなければならない。自然感染の間 、U.maydisは 植物の葉表面の口孔または創傷を通して植物組織に移動する。浸潤および植物の渦のピペット法は、 また、U.maydis 自然感染過程を模倣するために使用されてきたが、植物組織8-10,25に浸透する病原体能力のばらつきのために限られた成功を有していた。しかし、針注射接種方法は、病原体の浸透問題を排除する植物葉の間に U.maydis 細胞懸濁液培養を送達する。

病原体25に耐性のある植物を同定するために必須であるU.maydisの抵抗反応評価尺度の確立。本プロトコルは、トウモロコシおよびテオシンテ植物のマイディス感染のために確立された1(耐性)〜5(罹患しやすい)疾患評価尺度の詳細な説明を与える。何百もの植物で大規模な実験を開始する前に、最初にテスト接種を行い、少数の植物をスクリーニングすることは無力です。本プロトコルで確立された抵抗反応評価尺度は、2つの異なる実験で700植物のフェノタイプから成る。結果の一貫性と再現性を実証するために、接種およびスクリーニングプロトコルを少なくとも2回繰り返すことをお勧めします。

現在の注射接種方法および確立された耐性反応評価尺度は、 米国メイディス 感染に耐性のあるトウモロコシおよび/またはテオシンテ植物をスクリーニングおよび選択するために使用され続ける。その結果、この2つの方法は、米国および国際的に収量損失を減少させる 可能性のある感染 に対する耐性を改善するための繁殖プログラムで使用できる農業において多くの重要な意味を持つ。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は開示するものは何もありません。

Acknowledgments

エミール・イスラモビッチ博士の研究室と温室支援に感謝します。また、シェリー・フリント・ガルシア博士がトウモロコシ×テオシンテのイントログレスラインを提供してくれたことに感謝します。

Materials

Name Company Catalog Number Comments
Seed for plants Collected from original crosses
Growth chamber Conviron PGR14 REACH-IN
Planting flats Hummert International 14-3385-2
Soil (3 parts pine bark; 1 part peat moss with perlite) Hummert International 10-1059-2
Laminar flow hood Lab Conoco 70875372
Glycerol stock of pathogen (U. maydis) or fungal pathogen of interest Stocks were grown from original culture
Sterile loop Fisher Scientific S17356A
Potato dextrose agar (PDA) plates Fisher Scientific R454311
Incubator set to 30 °C Fisher Scientific 11-690-650F
Sterile toothpicks Walmart Purchased from Walmart and sterilized by autoclave
Potato dextrose broth (PDB) Fisher Scientific ICN1008617
Incubator-shaker set to 30 °C New Brunswick 14-278-179
Spectrophotometer Fisher Scientific 4001000
U. maydis cell suspension culture (1 x 106 cells/ml) Grown from glycerol stock as described in the methods
3 ml Syringes Becton Dickinson 309606
.457 mm x 1.3 cm Hypodermic needles Kendall Brands 8881250321

DOWNLOAD MATERIALS LIST

References

  1. Smith, J. T. Crop fungal resistance developed using genetic engineering and antifungal proteins from viruses. , ISB News. report http://www.isb.vt.edu/news/2011/nov/cropfungalresistance.pdf (2011).
  2. Sher, A. F., MacNab, A. A. Vegetable diseases and their control. , 2, John Wiley & Sons Inc. New York, NY. 223-226 (1986).
  3. Crepet, W. L., Feldman, G. D. The earliest remains of grasses in the fossil record. Am. J. Bot. 78, 1010-1014 (1991).
  4. Iltis, H. H. Maize evolution and agricultural origins. Grass systematic and evolution. Scoderstrom, T. R., Hilu, K. W., Campbell, C. S., Barkworth, M. E. , Smithsonian Institution Press. Washington D.C.. 195-213 (1997).
  5. Mangelsdorf, P. C., Reeves, R. G. The origin of corn. III. Modern races, the product of tesonite. Bot. Mus. Leafl.. 18, 389-411 (1957).
  6. Agrios, G. N. Plant Pathology. , Academic Press. New York. (1997).
  7. Dean, R., et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant. Pathol. 13, 414-430 (2012).
  8. Estrada, A. E., Jonkers, W., Kistler, H. C., May, G. Interactions beteen Fusarium verticillioides, Ustilago maydis, and Zea mays: An endophyte, a pathogen, and their shared plant host. Fung. Genet. Biol. 49, 578-587 (2012).
  9. Freeman, S., Rodriguez, R. J. A rapid technique for assessing pathogenicity of Fusarium oxysporum f. sp niveum and F. o. melonis on cucrbits. Plant Dis. 77, 1198-1201 (1993).
  10. Gottwald, T. R., Graham, J. H. A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens. Phytopathol. 82, 930-935 (1992).
  11. Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., Vega, F. E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Asomycota: Hypocreales). Mycolog. Res. 111, 748-757 (2007).
  12. Bolker, M., Bohnert, H. U., Braun, K. H., Gorl, J., Kahmann, R. Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated intergratior (REMI). Mol. Gen. Genet. 6, 274-283 (1991).
  13. Brachmann, A., Weinzierl, G., Kamper, J., Kahmann, R. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 42, 1047-1063 (2001).
  14. Christensen, J. J. Corn smut caused by Ustilago maydis. Monograph number 2. , The American Phytopathological Society. (1963).
  15. Skibbe, D. S., Doehlemann, G., Fernandes, J., Walbot, V. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Sci.. 328, 89-92 (2010).
  16. Kamper, J., et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 444, 97-101 (2006).
  17. Allen, A., Kaur, J., Gold, S., Shah, D., Smith, T. J. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol. J. 8, 857-864 (2011).
  18. Gold, S. E., Brogdon, S. M., Mayorga, M. E., Kronstad, J. W. The Ustilago maydis regulatory subunit of a cAMP-Dependent protein kinase is required for gall formation in maize. , (1997).
  19. Gold, S. E., Kronstad, J. W. Disruption of two chitin syn- thase genes in the phytopathogenic fungus Ustilago maydis. Mol. Microbiol. 11, 897-902 (1994).
  20. Brefort, T., Doehlemann, G., Mendoza-Mendoza, A., Reissmann, S., Djamei, A., Kahmann, R. Ustilago maydis as a Pathogen. Annu. Rev. Phytopathol. 47, 423-445 (2005).
  21. Doehlemann, G., Wahl, R., Vranes, M., de Vries, R., Kämper, J., Kahmann, R. Establishment of compatibility in the Ustilago maydis/maize pathosystems. J. Plant Physiol. 165, 29-40 (2008).
  22. Reineke, G., Heinze, B., Schirawski, J., Buettner, H., Kahmann, R., Base, C. W. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumor formation. Mol. Plant Pathol. 9, 339-355 (2008).
  23. Martínez-Espinoza, A., García-Pedrajas, M. D., Gold, S. E. The Ustilaginales as Plant Pests and Model Systems. Fungal Genet. Biol. 35, 1-20 (2002).
  24. Banuett, F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29, 179-208 (1995).
  25. Keen, N. T. A century of plant pathology: a retrospective view on understanding host-parasite interactions. Annu. Rev. Phytopathol. 38, 31-48 (2000).

Tags

環境科学 問題 83 細菌感染 徴候と症状 エウカリオタ 植物生理現象 ウスチラゴメイディス 針注射接種 疾患評価尺度 植物病原体相互作用
トウモロコシとテオシンテ線における <em>ウスチラゴ</em> の病原性を評価するための迅速かつ効率的な方法
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Chavan, S., Smith, S. M. A Rapid and More

Chavan, S., Smith, S. M. A Rapid and Efficient Method for Assessing Pathogenicity of Ustilago maydis on Maize and Teosinte Lines. J. Vis. Exp. (83), e50712, doi:10.3791/50712 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter