Summary

小鼠角膜移植模型,研究实体器官移植的最常见形式

Published: November 17, 2014
doi:

Summary

Mice have been used as a model for studying many forms of transplantation, including corneal transplantation. We describe in this report a murine model for both acute and late-term corneal transplantation.

Abstract

Corneal transplantation is the most common form of organ transplantation in the United States with between 45,000 and 55,000 procedures performed each year. While several animal models exist for this procedure and mice are the species that is most commonly used. The reasons for using mice are the relative cost of using this species, the existence of many genetically defined strains that allow for the study of immune responses, and the existence of an extensive array of reagents that can be used to further define responses in this species. This model has been used to define factors in the cornea that are responsible for the relative immune privilege status of this tissue that enables corneal allografts to survive acute rejection in the absence of immunosuppressive therapy. It has also been used to define those factors that are most important in rejection of such allografts. Consequently, much of what we know concerning mechanisms of both corneal allograft acceptance and rejection are due to studies using a murine model of corneal transplantation. In addition to describing a model for acute corneal allograft rejection, we also present for the first time a model of late-term corneal allograft rejection.

Introduction

角膜移植是最成功的和常见的类型移植在人执行的一个。为什么进行该手术的原因是损伤,感染性疾病1,或其他形式的非感染性角膜病2的结果。从美国眼库协会的数据显示,46000在2011年进行(见网站:restoresight.org/eye_banks/eye_banks.html)。其成功的标志是有一年不合格率同种异体角膜移植物的范围从10%至15%,并在5年的成功是超过70%3-8。因为许多研究已经显示,角膜移植的成功是直接关系到一个事实,即眼睛的免疫特权部位。负责角膜状态作为免疫特权部位因素包括缺乏既血管和淋巴管在角膜中,相对缺乏抗原呈递细胞的因子,由角膜该suppres产生免疫效应器funtions 9-15,MHC的低表达抗原16,和FasL 17-20的表达。

然而,尽管这些因素诱发这些移植成功的,它们经历排斥3-7。因此,了解这些调解这种排斥反应的机制,以及测试各种治疗,以防止排斥反应是至关重要的。为此,我们在这里描述角膜移植是已经使用了超过20年,研究角膜移植在受控的实验环境的小鼠模型。自移植反应涉及协同工作的许多不同的因素,这将最终确定移植的组织是否失败或成功,则它不可能了解这些因素中的任何体外模型中的重要性。因此,使用完整的动物研究是必需的,以确定哪些因素是重要的成功或者failu重新移植组织。

而其它种类的动物被用来研究角膜移植中,当相比于使用其他种类的鼠模型中具有几个优点。第一个是表示某些转基因的或已被基因靶向至缺乏特异性免疫因子,其功能在移植可以更好地研究了表达小鼠的许多菌株的存在。此外,还有许多试剂(包括重组因子和抗体是中和因子)是特定于小鼠,并且不为其他许多种动物的存在。由于这些因素的存在,该模型已被广泛用于鉴定参与急性角膜移植反应15,17,18,20 -29有关因素。此外,有许多参与角膜移植的因素也是已知的是功能在其他组织中的移植。

Protocol

注意:在此过程中使用的所有动物都按照研究协会在视觉与眼科语句在眼科和视觉研究用动物,以及订定圣路易斯大学动物监督委员会的指导方针进行处理。 注:所有手术器械和解决方案之前进行消毒手术,以限制眼睛微生物感染。应当指出的是,虽然动物做这个过程遇到一些痛苦,我们不使用止痛剂。这样做的理由是因为所有的止痛药是消炎和自角膜移植反应涉及炎症,使用抗炎药物会损…

Representative Results

已用于角膜移植的小鼠模型中超过20年,成功刻画两个角膜移植排斥反应19-23和角膜移植验收13,15,16,18,24-27机制。该模型被用于建立在角膜移植接受FasL表达的重要性,在该动物缺乏FasL的不能够接受角膜移植物15。它也被用来表明,血管内皮生长因子受体1啉治疗显著增加角膜移植存活28。在一个非常最近的一份报告此模型来之前,角膜移植测试是否小鼠的预处理与…

Discussion

这里描述角膜移植的小鼠模型使研究人员研究人类角膜移植排斥反应的模型,该模型预测的因素是什么,最好既排斥15,17,18,20,26-30和角膜的验收21-25关联移植。不象人类角膜移植,其中给予患者或者局部或全身激素治疗,以任一治疗或预防排斥31,该模型通常用于确定那些是相关的同种异体移植排斥反应在不存在这样的治疗的因素。除了一款型号为急性角膜移植排斥反应?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank the many individuals who have worked on and perfected this technique and have been responsible for the generation of many manuscripts both in this lab and others. This work was supported by National Institutes of Health Grant EY12707 (PMS) and an unrestricted grant from Research to Prevent Blindness to Department of Ophthalmology.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Zeiss Surgical Microscope Zeiss Rebuilt
1 mL Syringe BD 305122
3 mL Syringe BD 309657
10 mL Syringe BD 309602
Vannus Scissors Stortz E-3387
11-0 Sutures Alcon 717939M
Trephine 2.0mm Katena K 2-7520
Trephine 1.5 mm Katena K 2-7510
Tricaine Hydrochloride 0.5% Alcon NDC 0065-0741-12
Healon Abbott Healon OVD
Forceps FST 11251-20
7-0 Sutures Alcon 8065
2.5% Phenylephrine HCl Alcon NDC 61314-342-02
1% Tropicamide Bausch & Lomb NDC-24208-585-59
Hamilton Syringe Hamilton 7654-01
33 gauge needle Hamilton 90033
Cell Strainer (100 μm nylon) BD Falcon 352360
Hemocytometer Cardinal Health B3175
Trypan Blue Sigma T8154

References

  1. Farooq, A. V., Shukla, D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv. Ophthalmol. , 448-462 (2012).
  2. Gipson, I. K. Age-related changes and diseases of the ocular surface and. Invest. Opthlamol. Vis. Sci. 54, 48-53 (2013).
  3. Edwards, M., et al. Indications for corneal transplantation in New Zealand: 1991-1999. Cornea. 21, 152-155 (2002).
  4. Thompson, R. W., Price, M. O., Bowers, P. J., Price, F. W. Long-term survival after penetrating keratoplasty. Ophthalmol. 110, 1396-1402 (2003).
  5. Williams, K. A., Roder, D., Esterman, A., Muehlberg, S. M., Coster, D. J. Factors predictive of corneal graft survival. Report form the Australian Corneal Graft Registry. Ophthalmology. 99, 403-414 (1992).
  6. Larkin, D. F. Corneal allograft rejection. Br. J. Ophthalmol. 78, 649-652 (1994).
  7. Boisjoly, H. M., et al. Risk factors of corneal graft failure. Ophthalmol. 100, 1728-1735 (1993).
  8. Sugar, A., et al. Recipient Risk Factors for Graft Failure in the Cornea Donor Study. Ophthalmol. 116, 1023-1028 (2009).
  9. Namba, K., Kitaichi, N., Nishida, T., Taylor, A. W. Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J. Leukoc. Biol. 72, 946-952 (2002).
  10. Taylor, A. W., Yee, D. G., Streilein, J. W. Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor. Invest. Ophthalmol. Vis. Sci. 39, 1372-1378 (1998).
  11. Wilbanks, G. A., Mammolenti, M., Streilein, J. W. Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-beta. Eur. J. Immunol. 22, 165-173 (1992).
  12. Volpert, O. V., et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat. Med. , 8-349 (2002).
  13. Apte, R. S., Sinha, D., Mayhew, E., Wistow, G. J., Niederkorn, J. Y. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J. Immunol. 160, 5693-5696 (1998).
  14. Kennedy, M. C., et al. Novel production of interleukin-1 receptor antagonist peptides in normal human cornea. J. Clin. Invest. 95, 82-88 (1995).
  15. Shimmura-Tomita, M., Wang, M., Taniguchi, H., Akiba, H., Yagita, H., Hori, J. Galectin-9-mediated protection from allo-specific T cells as a mechanism of immune privilege of corneal allografts. PLoS One. 8, (2013).
  16. Goldberg, M. F., Ferguson, T. A., Pepose, J. S. Detection of cellular adhesion molecules in inflamed human corneas. Ophthalmol. 101, 161-168 (1994).
  17. Stuart, P. M., Griffith, T. S., Usui, N., Pepose, J. S., Yu, X., Ferguson, T. A. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest. 99, 396-402 (1997).
  18. Yamagami, S., et al. Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation. 64, 1107-1111 (1997).
  19. Stuart, P. M., Pan, F., Plambeck, S., Ferguson, T. A. Fas/Fas ligand interactions regulate neovascularization in the cornea. Invest. Ophthalmmol. Vis. Sci. 44, 93-98 (2003).
  20. Stuart, P. M., Yin, X. T., Pan, F., Haskova, Z., Plambeck, S., Ferguson, T. A. Inhibitors of matrix metalloproteinases activity prolong corneal allograft acceptance by increasing FasL expression. Invest. Ophthalmol. Vis. Sci. 45, 1169-1173 (2004).
  21. Joo, C. -. K., Pepose, J. S., Stuart, P. M. T-cell mediated responses in a murine model of orthotopic corneal transplantation. Invest.Ophthalmol. Vis. Sci. 36, 1530-1540 (1995).
  22. Sonoda, Y., Sano, Y., Ksander, B., Streilein, J. W. Characterization of cell-mediated immune responses elicited by orthotopic corneal allografts in mice. Invest. Ophthalmol. Vis. Sci. 36, 427-434 (1995).
  23. Sano, Y., Osawa, H., Sotozono, C., Kinoshita, S. Cytokine expression during orthotopiccorneal allograft rejection in mice. Invest. Ophthalmol. Vis. Sci. 39, 1953-1957 (1998).
  24. Haskova, Z., Usui, N., Ferguson, T. A., Pepose, J. S., Stuart, P. M. CD4+ T cells are critical in corneal but not skin allograft rejection. Transplantation. 69, 483-488 (2000).
  25. Tan, Y., et al. Immunological disruption of antiangiogenic signals by recruited allospecific T cells leads to corneal allograft rejection. J. Immunol. 188, 5962-5969 (2012).
  26. Dana, M. R., Yamada, J., Streilein, J. W. Topical interleukin-1 receptor antagonist promotes corneal transplant survival. Transplantation. 63, 1501-1507 (1997).
  27. Cunnusamy, K., Chen, P. W., Niederkorn, J. Y. IL-17A-dependent CD4+CD25+ regulatory T cells promote immune privilege of corneal allografts. J. Immunol. 186, 6737-6745 (2011).
  28. Fu, H., et al. Arginine depletion as a mechanism for the immune privilege of corneal allografts. Eur. J. Immunol. 41, 2997-3005 (2011).
  29. Medina, C. A., Rowe, A. M., Yun, H., Knickelbein, J. E., Lathrop, K. L., Hendricks, R. L. Azithromycin treatment increases survival of high-risk corneal allotransplants.Cornea. , 32-658 (2013).
  30. Cho, Y. K., Zhang, X., Uehara, H., Young, J. R., Archer, B., Ambati, B. Vascular Endothelial Growth Factor Receptor 1 morpholino increases graft survival in a murine penetrating keratoplasty. Invest. Ophthalmol. Vis. Sci. 53, 8458-8471 (2012).
  31. Kim, H. K., Choi, J. A., Uehara, H., Zhang, X., Ambati, B. K., Cho, Y. K. Presurgical corticosteroid treatment improves corneal transplant survival in mice. Cornea. 32, 1591-1598 (2013).
  32. Yamazoe, K., Yamazoe, K., Shimazaki-Den, S., Shimazaki, J. Prognostic factors for corneal graft recovery after severe corneal graft rejection following penetrating keratoplasty. BMC Ophthalmol. 13, 5 (2013).
  33. Panda, A., Vanathi, M., Kumar, A., Dash, Y., Priya, S. Corneal graft rejection. Surv. Ophthalmol. 52, 375-396 (2007).
  34. Patel, S. V. Graft survival and endothelial outcomes in the new era of endothelial keratoplasty. Exp. Eye Res. 95, 40-47 (2012).
  35. Anshu, A., Price, M. O., Tan, D. T., Price, F. W. Endothelial keratoplasty: a revolution in evolution. Surv. Ophthalmol. 57, 236-252 (2013).

Play Video

Cite This Article
Yin, X., Tajfirouz, D. A., Stuart, P. M. Murine Corneal Transplantation: A Model to Study the Most Common Form of Solid Organ Transplantation. J. Vis. Exp. (93), e51830, doi:10.3791/51830 (2014).

View Video