Summary

树突棘从锥体神经元的三维定量从人类诱导多能干细胞衍生

Published: October 10, 2015
doi:

Summary

锥体神经元的树突棘是哺乳动物大脑皮质最兴奋性突触的部位。此方法描述在从诱导的多能干细胞衍生的人皮质锥体谷氨酸能神经元脊柱形态的三维定量分析。

Abstract

树突棘是对应于兴奋性突触的中枢神经系统的突触后隔室的小突起。它们沿树突分布。它们的形态,在很大程度上取决于神经元活动,它们是动态的。树突棘在其表面表达并在突触后密度的水平谷氨酸受体(AMPA和NMDA受体)。每个脊椎使神经元能够独立控制其国家和地方的活动。脊柱形态已被广泛研究,在大脑皮质的谷氨酸锥体细胞,同时使用在体内的方法和从啮齿动物的组织得到的神经元培养物。神经病理症状可以关联到改变的脊柱感应和成熟,如图啮齿动物培养的神经元和一维定量分析1。本研究描述了一个协议,用于脊椎形态的三维定量分析使用人类cortic人神经元的神经干细胞(后期皮质祖细胞)获得。这些细胞最初从诱导的多能干细胞获得的。该协议允许脊柱形态的不同培养时间的分析,并与来自对照个体与那些从患者的精神疾病得到得到诱导多能干细胞之间的可能的比较。

Introduction

皮质锥体神经元的树突棘是它们沿着这些神经元亚型的啮齿动物,灵长类动物和人类的大脑基底和顶树突分布小而薄的突起。他们最兴奋性突触的位点,并显示在学习和认知过程的关键功能。人树突棘的详细结构已经从技术上研究了电子显微镜2。然而,这种方法是费时和表示繁重的工作量。最近,使用组合的大型人工脊椎分析3特定软件的三维(3D)重建树突棘的形态的已报道在人类大脑皮质。

绿色荧光蛋白(GFP)的技术联接到免疫表示由荧光显微镜的精确工具脊柱识别和形状测定。这种方法可以容易地应用于培养的神经元。豪版本,没有数据已被报道脊柱成熟和形态上从诱导的多能干细胞(IPSC)衍生的人神经元分析。

本研究的目的是描述一种协议,它允许从体外培养的人神经元树突棘成像。绿色荧光蛋白标记,激光共聚焦显微镜和3D分析了Imaris软件的灯丝示踪模块进行了本协议中使用。培养的步骤所必需的获得层的皮层谷氨酸能神经元二至四从神经干细胞(NS​​C)也在这里简单说明。整个协议为人类NSC生产已经在别处4出版。

Protocol

1.神经文化注意:在多能干细胞成纤维细胞重编程,承诺向背侧端脑谱系,推导,放大,和银行的晚期皮质祖细胞(LCP)在Boissart 等人 4进行了描述。还根据Boissart 等人 4在稍微修改执行LCP样细胞的神经元分化。其他程序已经开发了用于成纤维细胞的成诱导多能干细胞,接着通过分化成神经元的直接重编程。该协议被保留下来,因为它允许选择性生…

Representative Results

本研究描述了一种标准化协议,用于从iPSC的衍生锥体神经元的树突培养脊柱量化。该协议允许对人类神经元脊柱成熟及其与在标准啮齿动物神经元培养棘的成熟以及体内动物模型可以比较的分析。 图1A表示的不同步骤培养的,其允许生产皮层锥体神经元的方案。这样示意表示,以便更好地了解生产赋予不同类别刺锥体神经元的全球时间缩放提供。 Repr…

Discussion

的锥体神经元的形态学特征的量化依靠软件。灯丝示踪接口用于神经元和刺的分割,以及XT模块用于自己的分析。

分析我们技术的准确性,我们首先比较所测量的形态学参数(长度,面积和总体积脊柱适用时),与那些使用大鼠成熟锥体神经元在培养6,7和人脑组织3出版。密度是相当的所有情况。没有量 ​​的数据是在大鼠神经元描述了使用自己的协议为容积…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by the Institut Pasteur, the Bettencourt-Schueller foundation, Centre National de la Recherche Scientifique, University Paris Diderot, Agence Nationale de la Recherche (ANR-13-SAMA-0006; SynDivAutism), the Conny-Maeva Charitable Foundation, the Cognacq Jay Foundation, the Orange Foundation, and the Fondamental Foundation. L.G. is supported by an undergraduate fellowship from the Health Ministry. We acknowledge the help of BitPlane in particular Georgia Golfis, in the early stage of this work.

Materials

PD-PBS (1X), sans Calcium, Magnesium et Phenol Red Gibco/ Life Technologies 14190169
Poly-L-Ornithine Solution Bioreagent Sigma Aldrich P4957
Mouse laminin Dutscher Dominique 354232
N2 Supplement Gibco/ Life Technologies 17502048
B-27 Supplement w/o vit A (50X) Gibco/ Life Technologies 12587010
DMEM/NUT.MIX F-12 W/GLUT-I Gibco/ Life Technologies 31331028
Neurobasal Med SFM Gibco/ Life Technologies 21103049
2-mercaptoethanol Gibco/ Life Technologies 31350-010
Pen-Steptomycin Gibco/ Life Technologies 15140-122
GFP Rabbit Serum Polyclonal Antibody Gibco/ Life Technologies A-6455
Horse serum Gibco/ Life Technologies 16050130
Alexa Fluor 488 Goat Anti-Rabbit  Gibco/ Life Technologies A11034
Polyclonal Anti-betaIII tubulin antibody Millipore AB9354
Coverglass 13 mm VWR 631-0150
Prolong Gold Antifade Reagent avec DAPI Gibco/ Life Technologies P36931
Tween(R) 20 Bioextra, Viscous Liquid Sigma Aldrich Chimie P7949
Triton X-100 Sigma Aldrich Chimie X100-100ML
Human Fibroblasts Coriell Cell Line Biorepository GM 4603 and GM 1869 Coriell Institute for Medical Research, Camden, NJ, USA
Confocal laser scanning microscope Zeiss (Germany) LSM 700
Imaris Software Bitplane AG, Zurich 6.4.0 version Filament Tracer and Imaris XT modules are necessary
Huygens Software Huygens software, SVI, Netherlands Pro version Optional (for deconvolution testing)

References

  1. Durand, C., et al. SHANK3 mutations identified in autism led to modification of dendritic spine morphology via an actin-dependent mechanism. Molecular Psychiatry. 17 (1), 71-84 (2013).
  2. Arenallo, J. I., Espinosa, A., Fairen, A., Yuste, R., Defelipe, J. Non-synaptic dendritic spines in neocortex. Neuroscience. 145, 464-469 (2007).
  3. Benavides-Piccione, R., Fernaud-Espinosa, I., Robles, V., Yuste, R., DeFelipe, J. Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cerebral Cortex. 23 (8), 1798-1810 (2013).
  4. Boissart, C., et al. Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Translational Psychiatry. 3, 1-11 (2013).
  5. Avale, M. E., et al. Interplay of beta 2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion. Proceedings of National Academy of Science USA. 105 (41), 15991-15996 (2008).
  6. Xie, Z., et al. Coordination of synaptic adhesion with dendritic spine remodeling by AF6 and kalirin-7. Journal of Neuroscience. 28 (24), 6079-6091 (2008).
  7. Srivastava, D. P., et al. Afadin is required for maintenance of dendritic structure and excitatory tone. Journal of Biological Chemistry. 287 (43), 35964-35974 (2012).
  8. Srivastava, D. P., Woolfrey, K. M., Penzes, P. Analysis of dendritic spine morphology in cultured CNS neurons. Journal of Visualized Experiments. (53), e2794 (2011).
  9. Brennand, K. J., Gage, F. H. Modeling psychiatric disorders through reprogramming. Disease Models and Mechanisms. 5 (1), 26-32 (2012).
  10. Kim, S. S., Ross, P. J., Zaslavsky, K., Ellis, J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Frontiers in Cellular Neuroscience. 8, 1-16 (2014).
  11. Inoue, H., Nagata, N., Kurokawa, H., Yamanaka, S. iPS cells: a game changer for future medicine. EMBO Journal. 33 (5), 409-417 (2014).
  12. Stein, J. L., et al. Aquantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron. 83, 69-86 (2014).
  13. Sivapatham, R., Zheng, X. Generation and characterization of patient-specific induced pluripotent stem cell for disease modeling. Methods in Molecular Biology. , (2014).
  14. Xu, X., Miller, E. C., Pozzo-Miller, L. Dendritic spine dysgenesis in Rett Syndrome. Frontiers in Neuroanatomy. 8, 1-8 (2014).
  15. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., Wearne, S. L. Automated Three Dimensional Detection and Shape Classification of Dendritic spines from Fluorescence Microscopy Images. PLoS ONE. 3 (4), e1997 (2008).

Play Video

Cite This Article
Gouder, L., Tinevez, J., Goubran-Botros, H., Benchoua, A., Bourgeron, T., Cloëz-Tayarani, I. Three-dimensional Quantification of Dendritic Spines from Pyramidal Neurons Derived from Human Induced Pluripotent Stem Cells. J. Vis. Exp. (104), e53197, doi:10.3791/53197 (2015).

View Video