Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Developmental Biology

简单的力量:海胆胚胎作为 doi: 10.3791/55113 Published: February 16, 2017

Summary

这个视频文章详细描述可用于系统地和有效地描述在许多脊椎动物胚胎复杂的信号通路和调控网络的组件的体内方法直截了当。

Introduction

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

基因调控网络(GRNS)和信号转导途径建立胚胎发育过程中的基因被用于构建成年动物体计划的空间和时间表达。细胞至细胞的信号转导途径是这些调控网络的基本组成部分,提供了由该小区进行通信的装置。这些细胞相互作用建立和胚胎1,2中提炼的和之间的各种地区管理和分化的基因的表达。分泌细胞外调制器(配体,拮抗剂),受体和共受体之间的相互作用控制的信号转导途径的活性。细胞内分子的各种各样转导导致改变的基因表达,分裂,和/或形状的小区的这些输入。虽然许多在主要途径在细胞外和细胞内水平所使用的关键分子是公知的,它是由于在很大程度上各个信号通路的复杂性的不完整的知识。此外,不同的信号传导途径常常彼此正或负的细胞外,细胞内相互作用或者,和转录水平3,4,5,6。重要的是,信号转导通路的核心组件是高度保守的所有后生动物物种,并且,显着地,大部分的主要信号传导途径经常在许多物种中特定比较从密切相关的生物门生物体时执行类似的发展功能7,8,9, 10,11。

在开发过程中的信令的研究是在任何生物一个艰巨的任务,并有是在大多数后口模型(脊椎动物,无脊椎动物脊索动物,半索动物和棘皮)学习信号通路几个显著挑战:1)在脊椎动物中有大量的可能的配体和受体/共同调制的相互作用,细胞内的转导分子,以及由于基因组12,13,14的复杂性不同的信号通路之间潜在的相互作用; 2)配合物的形态和形态发生的运动在脊椎动物常常使其更难以解释在与信号转导途径之间的功能相互作用; 3)在多数非棘皮动物脊椎动物后口模型物种分析由孕的短窗口具有一些被囊动物物种15,16的异常的限制。

该海胆胚胎具有几个上述限制并提供了许多独特的品质在体内进行信号转导途径的详细分析。这些包括如下:1)在海胆基因组的相对简单显著减少了可能的配体,受体/共受体和细胞内转导分子的数量的相互作用17; 2)控制胚层和主要胚胎轴的说明书和构图的GRNS被很好地建立在海胆的胚胎,在细胞/地区的调节上下文的帮助理解接收的信号18,19; 3)许多信号转导通路可以早期卵裂和原肠阶段之间,当胚胎是由单层上皮细胞的形态比较容易分析进行研究; 4)涉及的分子d。在信令海胆很容易操纵的途径; 5)很多海胆都妊娠一年( 如紫色球海胆Lytechinus 10 斑叶至11个月)。

在这里,我们提出了一个方法,系统地,高效地刻画指定和海胆胚胎模式的领土,说明这几个无脊椎动物模型系统在复杂的分子机制研究提供了优势的信号通路的组成部分。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

1.高通量吗啉设计策略

  1. 鉴定感兴趣的基因(多个)( 例如 ,候选基因的方法,顺式调控分析,RNA测序和/或蛋白质组差动屏幕)。
  2. 使用基因组,转录组和可用的基因表达数据上经常更新的网站( SpBase http://www.echinobase.org 20S紫石基因搜寻的http:///urchin.nidcr.nih.gov/blast/index html的),以确定的时空表达谱与所讨论的发育机制重叠。如果没有表达数据是可用的,然后生成的qPCR引物和/ 或原位探针的反义来评估基因表达模式。
  3. 确定的空间和时间表达模式之后,获取从基因组网站的DNA序列。
    1. 为了生成翻译阻断吗啉代寡核苷酸序列获得ØF中的5'未翻译的区域(5'非编码区)直接上游上SpBase或S.紫石基因组搜索网站提供表达序列标签(EST)数据库起始密码子。如果此信息是用于感兴趣的基因不可用,则执行5'RACE。
    2. 要设计一个剪接阻塞吗啉,搜索包括外显子和使用SpBase或S.紫石基因组搜索工具脚手架BLASTN工具内含子的基因组序列。
  4. 使用该寡核苷酸设计网站http://oligodesign.gene-tools.com以设计所需的25个碱基对吗啉代序列。
    1. 对于平移阻挡吗啉,使用mRNA序列从5'到3'为平移靶序列的来源。包括5'非编码区序列(约70个核苷酸的转录起始位点的上游)加上起始密码子标记的Wi编码区(起始位点的下游)的25个碱基第括号(ATG)。
    2. 对于拼接阻塞吗啉代,选择内含子 - 外显子或外显子 - 内含子边界序列,并包括50个碱基(外显子序列的25基地和内含子序列的25个碱基)的边界区域周围。扫描具有吗啉代序列的基因组中,以验证该序列是唯一的。

2,吗啉寡聚核苷酸显微注射

  1. 通过加入100微升不含核酸酶的水进入300纳摩尔啉小瓶制备吗啉代寡核苷酸的3 1mM储备溶液。
    注:请不要使用DEPC处理过的水的再悬浮,因为焦碳酸二乙酯会损坏吗啉。
  2. 用于第一重构降速含有30秒全速股票寡核苷酸溶液的管形瓶(14000 - 16000 XG),简要地涡旋,热在65℃下进行5至10分钟,短暂涡旋,并保持啉库存在室温温度下至少1小时。吗啉原液 s的-20℃贮存至+4℃。
  3. 制备含有吗啉代寡核苷酸以所需浓度注射溶液。该溶液通常含有20%的甘油或125毫米氯化钾作为载体和15%FITC-葡聚糖(异硫氰酸荧光素葡聚糖的10,000MW 2.5毫克/μl原液)。 FITC-葡聚糖和其他荧光葡聚糖偶联物通常用于通过荧光显微镜,以确定注射的胚胎。在-20℃储存注射液。
  4. 热在热块或水浴至少2在65℃的吗啉溶液 - 5分钟。
  5. 旋转简要30秒全速啉溶液(14000 - 16000 XG)全速1分钟,离心机,混匀(14000 - 16000 XG)至少10分钟。
  6. 负载啉溶液注射针。有关详细显微注射的协议,请参阅Stepicheva,宋,2014年21和欢呼声和Ettensohn,2004年“> 22。

3.固定和原位协议在紫石S.胚胎24小时受精后(HPF)

注:此协议从阿里纳斯-梅纳进行修改 2000年23塞西等。 ,2014年24。

  1. 固定术
    1. 加入数滴固定液(见下文),含胚胎的井,用移液器轻轻混匀,并允许他们定居。除去固定液,然后用固定剂的两个附加180微升洗涤液混合胚胎。
      注意:对胚胎轻柔吹打向上和向下几次洗涤液中调匀是很重要的。 如果不这样做可以降低信噪比。
    2. 离开胚胎在第二固定剂洗涤50分钟到1小时,在室温(RT)下在4%的电子显微级低聚甲醛组成的10mM MOPS pH为7.0的修正,0.1%吐温-20,以及人工seawateR(ASW)。让每次最好的结果该解决方案新鲜。此外,为了便于和实用的胚胎被固定在96孔板中。
      1. 为20毫升固定剂使用5毫升16%的多聚甲醛,15毫升ASW,200微升的1M MOPS pH为7.0和20微升吐温20。
    3. 在RT洗5次具有MOPS 180微升洗涤缓冲液由0.1M的MOPS pH为7.0,0.5M NaCl和0.1%Tween-20的至少5分钟或直至胚胎下降到井的底部。再次,要彻底轻轻吹打上下数次胚胎到洗涤缓冲混合是很重要的。 MOPS洗涤缓冲液可用于2天,如果保存在4 C。
      1. 为40毫升的MOPS洗涤缓冲液使用4毫升的1M MOPS pH 7.0的,4毫升5M的氯化钠,32毫升的dh 2 O和40微升吐温20。
      2. 固定的胚胎可以保存在4℃下2天。
        注意:如果存储固定胚胎长,再加入0.2%的叠氮化钠在MOPS洗涤缓冲以防止细菌滋生。
  2. 预杂交
    1. 吸出MOPS洗涤缓冲,并添加2 180微升:MOPS的1比洗涤缓冲到杂交缓冲液中,胚胎混合到通过温和移液几次该溶液中,并在室温下孵育至少20分钟。杂交缓冲液由70%的甲酰胺,0.1M MOPS pH为7.0,0.5M的NaCl,1mg / mL的BSA和0.1%吐温-20。
      1. 对于40毫升杂交缓冲液使用4毫升的1M MOPS pH为7.0,4毫升5 M氯化钠,4毫升的dh 2 O,0.04克BSA和40微升吐温20。涡旋拌匀,再次添加28毫升甲酰胺和旋涡。
    2. 取出2:1的比例的MOPS洗和杂交缓冲液,并添加1 180微升:2的比例MOPS的洗涤缓冲至杂交缓冲液,胚胎混合到该溶液中,并在室温下孵育至少20分钟。
    3. 之前探针杂交胚胎轻轻拌匀成100 - 150微升杂交缓冲液。在50℃下孵育胚胎至少1H。
      注:隔夜孵化的胚胎是可以接受的。孵育前,密封件用粘合剂片材的孔中,以防止蒸发。
  3. 杂交
    1. 轻轻0.3纳克/微升探针和500微克/毫升酵母tRNA到杂交缓冲液中,然后涡旋创建探针溶液 - 在一个单独的试管中加入0.1。酵母tRNA加到探针溶液以降低非特异性反义探针的结合。预热该溶液至50℃,并吸出杂交缓冲液。
    2. 混合预杂交胚入100微升探针溶液中,用粘合剂片材密封,并在50℃下杂交为取决于探头2至7天(foxq2探针可以温育2天)。
      注意:孵育时间将因关闭探头。在低水平表达的一些基因需要长达7天的潜伏期。 96孔板可以被放置在一个恒温恒湿箱作为投保蒸发如果adhes香港专业教育学院表无法正确密封。
    3. 在50℃下用新鲜的MOPS的180微升洗5次洗涤缓冲液,共3小时。然后,洗3次(15分钟)与180 MOPS的微升在RT洗涤缓冲液。请记住混合胚胎入洗轻轻吹打几次,每次缓冲区。
  4. 抗体孵育
    1. 吸出MOPS洗涤缓冲液和在180微升封闭缓冲液由10%正常羊血清和5毫克的混合胚胎/ mL BSA的在MOPS洗涤缓冲液和在室温下孵育至少45分钟或4℃过夜。
    2. 除去封闭缓冲液,然后胚胎混入阻断含有1缓冲液:碱性磷酸酶缀合的抗洋地黄毒苷抗体的1500稀释在封闭缓冲液稀释。孵育在室温过夜,在密封板以避免蒸发。注意:不要离开不是一蹴而就更长的抗体。
    3. 洗胚胎6次(5分钟或直到胚胎掉落)在MOPS在室温洗涤缓冲液。胚可以在4℃下过夜贮存。
  5. 原位发展
    1. 在RT洗胚胎3次(10分钟)用由的0.1M Tris pH值9.5,100mM NaCl的50 mM的氯化镁 ,1mM的左旋咪唑新鲜制备的pH 9.5缓冲液和0.1%吐温-20。
      1. 20毫升的pH 9.5缓冲用2毫升的1M Tris pH值9.5,400微升5M氯化钠,1毫升的1摩尔氯化镁 ,20微升吐温20,16.6毫升卫生署2 O和0.0048克左旋咪唑。
    2. 孵育在37℃的胚胎在避光染色缓冲液。染色缓冲液由10%的二甲基甲酰胺,4.5微升/毫升4-硝基蓝四唑氯化物(NBT),和3.5微升/毫升的新鲜制备的pH 9.5缓冲5-溴-4-氯-3-吲哚磷酸(BCIP) 。
      1. 为1毫升染色缓冲液使用100微升二甲基甲酰胺,4.5微升的NBT和3.5微升BCIP。
    3. 通过在MOPS洗涤3至5次停止碱性磷酸酶反应洗涤缓冲液。反应无线个所述foxq2探针通常需要30分钟至1小时。有些探头可在Rt或4℃需要过夜培养。
    4. 混合胚胎成70%的MOPS洗涤和30%甘油的溶液。甘油提供必要的显微镜的折射率。胚胎可以存储在该溶液中几个星期。密封塑料石蜡板,以防止水分蒸发。
  6. 玻片制备和图像捕获
    1. 通过设置双面胶带的三个小条与条之间的小间隙上的滑动三角形制备的幻灯片。
    2. 转移在70%MOPS洗涤和30%的甘油溶液中的胚胎的三角形的中心,并用盖玻片覆盖。
    3. 周围盖玻片边缘运用指甲油一层密封盖玻片。
    4. 捕获使用复合光显微镜20倍的目标和一个附加的摄像机图像。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

在海胆胚胎我们已经表明,3种不同的Wnt信号分支(的Wnt /β-catenin的,Wnt基因/ JNK,和Wnt / PKC)4,25相互作用形成在管辖前后(AP)的图案形成一个Wnt信号网络。其中的一个信号事件的最重要的结果是,初始广泛表达前神经外胚层(ANE)GRN变得由原肠胚形成的开始(24高倍视野在S紫石 )限制到周围的前极小领土。这些结果表明,Wnt基因/β-catenin信号防止ANE基因激活的胚胎的后一半的32个细胞阶段。然后,该途径中继一个信号,即逐步向下调节ANE GRN在60细胞期和早期原肠胚形成的胚胎的前半部分的非经典Wnt / JNK信号传导途径。最后,第三个非经典Wnt通道法Y,Wnt信号/ PKC,拮抗的Wnt / JNK信号通路,并阻止其消除周围的前极ANE规范( 1A)4。

我们使用foxq2的时空表达以测定对AP的图案化期间的每个Wnt信号分支的活性,因为它是在ANE GRN激活的前两个基因之一,它是由原位杂交容易评估,因为它的稳健表达26。如果任何个人Wnt信号分支扰动,然后有明确的表达的表型,表明该途径参与:1)在没有的Wnt /β-catenin信号广阔的产妇调节机制( 图1A)的激活整个胚胎foxq2表达( 图1BB); 2)在没有的Wnt / JNK信号foxq2的贯穿表示胚胎( 图1BC)的前半部分,但它仍然是倒在后半部由于的Wnt /β-catenin信号通路( 图1A)的活性调控;在没有Wnt信号/ PKC信号foxq2表达的完全是倒在整个胚胎( 图1BD)的监管,因为Wnt信号/β-catenin和Wnt信号/ JNK信号通路被上调4,25。因此,我们开发了我们称之为foxq2转录读出系统,该系统中,当与我们的系统的工作流( 图2)相结合,使我们能够有效地识别并测试感兴趣的基因是否参与的一个或多个Wnt信号的检测信令分支。

用这里介绍的方法和foxq2读出系统,我们已经确定了几个推定胞外或胞内molecULES可能参与管理的AP轴说明书中,其中四个在图3中出现的Wnt信号的网络。与拦截或转录因子,ATF2,或分泌细胞外Wnt调节的表达,WIF-1吗啉注射的胚胎,表明朝向胚胎的后极foxq2表达的早期原肠胚阶段的膨胀( 图3A - Visual C )。这些结果模仿时的Wnt / JNK信号传导途径的成员被撞倒4,25中观察到的表型,这表明它们是该信令分支所必需的下调在胚胎的前半ANE GRN表达的成员。相反,当我们撞倒转录因子,NFAT( 图3D)的表达foxq2表达被淘汰,并且分泌的胞外调制器,sFRP3 / 4( 图3E),这表明这些分子参与Wnt信号/ PKC途径所必需通过的Wnt / JNK信号拮抗ANE GRN的下调。基于这些迅速获得的结果,我们现在能够执行更详细的功能分析,将放置涉及管辖的AP图案形成在海胆胚胎的GRN不断发展的Wnt信号传导网络中的这些因素。

图1
1. AP规范和图案的海胆和 foxq2 转录读出系统 模型 (一)在文本和4,9详细介绍了Wnt信号网络ANE GRN的逐步下调绕前极领土。 (B)transcriptiona升读出系统示出了在指示Wnt途径击倒(KO)foxq2表达。比例尺= 20微米。 请点击此处查看该图的放大版本。

图2
图2. 实验流程图高效的Wnt信号网络分析中海胆胚胎。 请点击此处查看该图的放大版本。

图3
图3. 在Wnt信号网络管理AP轴规格和图案参与信号转导分子鉴定使用 foxq2 转录读出系统。 (A,B,C),吗啉代击倒表明细胞内信号调制器,ATF2,并分泌细胞外调制器,WIF-1,是Wnt信号/ JNK信号传导途径的潜在玩家。 (A,D,E)的击倒实验表明,NFAT,细胞内信号调制器,和sFRP3 / 4,分泌的Wnt信号传导调节剂,参与Fzl1 / 2/7-PKC信令。比例尺= 20微米。 请点击此处查看该图的放大版本。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

这里介绍的方法是..许多实验室正在早期海胆发育期间使用类似测定解剖示出使用胚胎与基因组和形态比脊椎动物复杂较少了解信号转导途径和GRNS理事基本发育机制的功率的一例信令涉及其他细胞命运规范事件的途径( 缺口,刺猬,TGF-β和FGF信号)27,28,29,30,31。这些海胆研究表明许多有趣和新颖的信令机制,执政早期海胆发展这些信号机制的很多方面出现口动物9,27,30 <中是保守SUP>,31,32。重要的是,非传统的后生动物胚胎的发育生物学的探索已经看到早期开发9,15,16,33在近几年有所增加,而且许多海胆胚胎这些共同特征。因此,这里提出的方法可以被广泛地早期发育过程中施加到在许多这些生物体的信号转导途径的研究。

用来击倒基因表达所有的技术都可能产生脱靶击倒效果。吗啉代已被证明是在很大程度上海胆胚胎一个非常有效的基因扰动方法因为社区进行严格控制,以减轻担心该敲除表型是无特异性。这些基本的控制测定可以为modified并应用于其它敲除技术( CRISPER / Cas9)。对照是:1)小心剂量响应测定法,直至注射的胚胎的≥80%显示有缺陷的表型和/或标记基因表达与每个吗啉代执行; 2)如果他们在造成中等浓度严重的发育迟缓,甚至死亡吗啉被丢弃。这些表型可能是由于毒性脱靶效应; 3)被设计为靶向不同结合位点的至少两个吗啉被用来确认击倒表型; 3)错义吗啉注射; 4)吗啉代表型通过引入的mRNA为靶基因导入吗啉拦截胚胎拯救; 5)如果可用,整装抗体染色测定法是用来表明吗啉击倒防止所关注的基因的翻译。值得注意的是,海胆社区使用至少四种功能性研究中,不同位置的科学家都位于它是重要的。在莫ST的情况下,就我们所知,各种使用吗啉代击倒已经产生每个品种的表型相似的同源基因(例如见节点这些功能研究信号34,35,36,37)。这些结果令人信服地我们严格的对照实验坚决选择那些生产上的目标击倒效果吗啉。

这种方法的另一个重要方面是要仔细确定最有可能直接由所考虑的信号传导途径激活的转录目标。我们在这里提供的例子是偶然的,因为信号通路的时空活化和稳健表达的基因的下调,foxq2,早在发育发生并在海胆胚胎理事胚层和轴说明书中GRNS是公-established。因此,这种方法的一个明显的局限性是,在许多情况下,可能有必要在发育的后期阶段和具体的领土内拦截特定信号传导途径的活性。有几种技术现已可用于克服这些限制( 例如光吗啉,保鲜盒/ Cas9 38,FACseq)即使在不适合于遗传操作的非传统模型胚胎。在许多情况下,可能无法识别的候选基因向下感兴趣的信号传导途径,其时空表达作为容易评定为foxq2,其具有显着高的信噪比的流。这是常见的发现的基因与低得多的信号 - 噪声比。如果另一基因为特定测定不可用,那么感兴趣的基因所产生的原位探头应尽可能长。一般情况下,使用探头1000个碱基对长小号显著增加的信号,并在原地测定降低比色和荧光的噪声。

一旦转录测定法,指示在何处以及是建立感兴趣的信号转导途径时信令,下一个重要步骤是确定这两个空间和涉及所研究的发展机制的推定的调控因子的时间表达。差分屏幕和/或数据QPCR是重要的工具,但它们可能会产生误导。 原位杂交所关注的基因的领土,其中信号传导途径被激活内表达了整装确认阻止的时间和资源的浪费。此外,这些数据允许对基因调节体系结构,这将告知,将遵循一旦参与该初始测定( 图2)被识别的玩家更详细的分析,以进行预测。我们提出一个SIMP乐在这个协议比色测定;然而, 荧光原位杂交(FISH)也可用于在同一时间以可视化多个荧光探针,允许感兴趣的领域内的增强空间分辨率,以及共焦显微镜24。另外,鱼可以用抗体染色进行配对,以确定翻译后修饰和/或其中感兴趣的信号传导途径被激活24。

有在常常被忽视的协议的两个关键步骤。一个是吗啉代寡核苷酸溶液的制备。它在65℃下加热吗啉溶液为2分钟至5分钟,并在全速加载注射针之前离心它为至少10分钟,是重要的。当吗啉原液储存在-20℃下,因为吗啉代寡核苷酸可以从在低温回火的溶液中沉淀出来,这些步骤是必不可少atures和溶液的纺丝可防止注射针从由颗粒堵塞。另一个重要的方面要考虑的是胚胎应在固定的每一个步骤 和原位杂交协议彻底混入各种解决方案。在我们手中,该信号被减少和/或如果不执行这个简单的步骤中的背景提高。

也许这里提出的方法中最重要的方面是,它允许的大集由下一代转录和蛋白质组学产生的电势的信号转导分子的高效功能分析。一旦这些最初的功能分析确认了一批参与感兴趣的信号调控因素的影响,接下来的挑战是利用建立的分析( 功能击倒;详细多色整体原位 ;生化相互作用),以评估它们如何适应该extracellu拉尔,细胞内,以及涉及在特定发育过程中的信号转导途径的转录水平。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Translational-blocking morpholino and/or splice-blocking morpholino Gene Tools LLC Customized More information at www.gene-tools.com
Glycerol Invitrogen 15514-011
FITC (dextran fluorescein isothiocyanate) Invitrogen, Life Technologies D1821 Make 25 mg/mL stock solution
Paraformaldehyde 16% solution EM Grade Electron Microscopy Sciences 15710
MOPS Sigma Aldrich M1254-250G
Tween-20 Sigma Aldrich 23336-0010
Formamide Sigma Aldrich 47671-1L-F
Yeast tRNA Invitrogen 15401-029
Normal Goat Serum Sigma Aldrich G9023-10mL
Alkaline Phosphatase-conjugated anti-digoxigenin antibody Roche 11 093 274 910
Tetramisole hydrochloride (levamisole) Sigma Aldrich L9756-5G
Tris Base UltraPure Research Products Internationall Corp 56-40-6
Sodium Chloride Fisher Scientific BP358-10
Magnesium chloride Sigma Aldrich 7786-30-3
BCIP (5-Bromo-4-Chloro-3-indolyl-phosphate Roche 11 383 221 001
4 Nitro blue tetrazolium chloride (NBT) Roche 11 383 213 001
Dimethyl Formamide Sigma Aldrich D4551-500mL
Potassium Chloride Sigma Aldrich P9541-5KG
Sodium Bicarbonate Sigma Aldrich S5761-500G
Magnesium Sulfate Sigma Aldrich M7506-2KG
Calcium Chloride Sigma Aldrich C1016-500G

DOWNLOAD MATERIALS LIST

References

  1. Erwin, D. H., Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nature reviews. Genetics. 10, 141-148 (2009).
  2. Peter, I. S., Davidson, E. H. Evolution of gene regulatory networks controlling body plan development. Cell. 144, 970-985 (2011).
  3. Borggrefe, T., et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. Biochimica et biophysica acta. 1863, 303-313 (2016).
  4. Range, R. C., Angerer, R. C., Angerer, L. M. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol. 11, e1001467 (2013).
  5. Cleary, M. A., van Osch, G. J., Brama, P. A., Hellingman, C. A., Narcisi, R. FGF, TGFbeta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. Journal of tissue engineering and regenerative medicine. 9, 332-342 (2015).
  6. Lapraz, F., et al. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol. 300, 132-152 (2006).
  7. Pires-daSilva, A., Sommer, R. J. The evolution of signalling pathways in animal development. Nature reviews. Genetics. 4, 39-49 (2003).
  8. Sethi, A. J., Wikramanayake, R. M., Angerer, R. C., Range, R. C., Angerer, L. M. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos. Science. 335, 590-593 (2012).
  9. Range, R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis. 52, 222-234 (2014).
  10. Petersen, C. P., Reddien, P. W. Wnt signaling and the polarity of the primary body axis. Cell. 139, 1056-1068 (2009).
  11. Lapraz, F., Haillot, E., Lepage, T. A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms. Nature communications. 6, 8434 (2015).
  12. Kikuchi, A., Yamamoto, H., Sato, A. Selective activation mechanisms of Wnt signaling pathways. Trends in cell biology. 19, 119-129 (2009).
  13. Hogan, B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594 (1996).
  14. Houart, C., et al. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron. 35, 255-265 (2002).
  15. Bertrand, S., Escriva, H. Evolutionary crossroads in developmental biology: amphioxus. Development. 138, 4819-4830 (2011).
  16. Rottinger, E., Lowe, C. J. Evolutionary crossroads in developmental biology: hemichordates. Development. 139, 2463-2475 (2012).
  17. Genome Sequencing Sea Urchin, C., et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 314, 941-952 (2006).
  18. Ben-Tabou de-Leon, S., Su, Y. H., Lin, K. T., Li, E., Davidson, E. H. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol. 374, 245-254 (2013).
  19. Saudemont, A., et al. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet. 6, e1001259 (2010).
  20. Cameron, R. A., Samanta, M., Yuan, A., He, D., Davidson, E. SpBase: the sea urchin genome database and web site. Nucleic Acids Res. 37, D750-D754 (2009).
  21. Stepicheva, N. A., Song, J. L. High throughput microinjections of sea urchin zygotes. Journal of visualized experiments : JoVE. e50841 (2014).
  22. Cheers, M. S., Ettensohn, C. A. Rapid microinjection of fertilized eggs. Methods in cell biology. 74, 287-310 (2004).
  23. Arenas-Mena, C., Cameron, A. R., Davidson, E. H. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development. 4631-4643 (2000).
  24. Sethi, A. J., Angerer, R. C., Angerer, L. M. Multicolor labeling in developmental gene regulatory network analysis. Methods in molecular biology. 249-262 (2014).
  25. Wikramanayake, A. H., Huang, L., Klein, W. H. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc Natl Acad Sci U S A. 95, 9343 (1998).
  26. Yaguchi, S., Yaguchi, J., Angerer, R. C., Angerer, L. M. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev Cell. 14, 97-107 (2008).
  27. Molina, M. D., de Croze, N., Haillot, E., Lepage, T. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo. Curr Opin Genet Dev. 23, 445-453 (2013).
  28. Range, R. C., Glenn, T. D., Miranda, E., McClay, D. R. LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo. Development. 135, 2445-2454 (2008).
  29. Range, R., et al. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1. Development. 134, 3649-3664 (2007).
  30. Warner, J. F., Miranda, E. L., McClay, D. R. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin. Dev Biol. 411, 314-324 (2016).
  31. Rottinger, E., et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development. 135, 353-365 (2008).
  32. Warner, J. F., McCarthy, A. M., Morris, R. L., McClay, D. R. Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol. 31, 18-22 (2014).
  33. Technau, U., Steele, R. E. Evolutionary crossroads in developmental biology. Cnidaria. Development. 138, 1447-1458 (2011).
  34. Yaguchi, J., Takeda, N., Inaba, K., Yaguchi, S. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm. PLoS Genet. 12, e1006001 (2016).
  35. Duboc, V., Rottinger, E., Besnardeau, L., Lepage, T. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell. 6, 397-410 (2004).
  36. Bradham, C. A., et al. Chordin is required for neural but not axial development in sea urchin embryos. Dev Biol. 328, 221-233 (2009).
  37. Su, Y. H. Gene regulatory networks for ectoderm specification in sea urchin embryos. Biochimica et biophysica acta. 1789, 261-267 (2009).
  38. Lin, C. Y., Su, Y. H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol. 409, 420-428 (2016).
简单的力量:海胆胚胎作为<em&gt;体内</em&gt;对于研究复杂的细胞与细胞间信号传导网络交互开发模式
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Range, R. C., Martinez-Bartolomé, M., Burr, S. D. The Power of Simplicity: Sea Urchin Embryos as in Vivo Developmental Models for Studying Complex Cell-to-cell Signaling Network Interactions. J. Vis. Exp. (120), e55113, doi:10.3791/55113 (2017).More

Range, R. C., Martinez-Bartolomé, M., Burr, S. D. The Power of Simplicity: Sea Urchin Embryos as in Vivo Developmental Models for Studying Complex Cell-to-cell Signaling Network Interactions. J. Vis. Exp. (120), e55113, doi:10.3791/55113 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter