Summary

行動するマウスにおける海馬シータ振動の光同調

Published: June 29, 2018
doi:

Summary

動作マウスにおける海馬シータ振動 (5-10 Hz) の選択を操作する光遺伝学、電気生理学的記録の使用について述べる。リズムの同調性は、ローカル フィールド ポテンシャルを使用して監視されます。光と薬理遺伝学的抑制の組み合わせは、海馬同期の遠心性の読み出しをアドレスします。

Abstract

ニューラル ネットワークの動作する振動の関係や脳領域間の神経放電の組織に関する広範なデータを求める脳リズムを選択的に操作するための新しいツール。ここで特定の投影光遺伝学を組み合わせて動作マウスにおける海馬シータ振動 (5-10 Hz) の忠実度の高いコントロールの細胞電気生理学のアプローチについて述べる。重要な海馬シータ振動の生成に関与する内側中隔細胞の gaba 作動性の人口にターゲット チャネルロドプシン 2 (ChR2) により光同調の特異性を実現し、ローカル同期活性化海馬の抑制性中隔求心性神経のサブセット。ラミナ CA1 野のや神経細胞の放電の間でローカル フィールド ポテンシャル (LFP) の同時観測による光遺伝学的リズム制御の有効性が検証されます。この容易に実装可能な製剤を用いた各種光刺激プロトコル シータの誘導とその頻度と規則性の操作の有効性を示す.最後に、投影法固有の抑制と θ リズム制御の組み合わせは遠心性の地域によって海馬の同期の特定の面の読み出しをアドレスします。

Introduction

哺乳類の神経細胞の活動は、内および脳領域1,2,3,4間の情報伝達を支援するネットワークの振動によって調整されます。脳のリズムには、非常に遅い ( 200 Hz) 周波数まで至る振動が含まれます。証拠の大きいボディは、認知5,6,7,8,9,10 を含む多様な脳機能でネットワーク振動の関与をサポートしています、パーキンソン病やてんかんの13,14,15などの神経疾患と同様に、生得的な行動11,12 。同期の生理学的にもっともらしいモデルの開発と動作の因果関係を確立するため、ネットワークの振動の実験的操作メソッドが選択的な一時的は欠かせないため。

ネットワーク同期は多様な生物学的基質とイオン チャネルの分子の id、その動力学から興奮性とネットワーク接続性の神経に至るまでのプロセスを介する。発電機16が明らかにされている多くの脳のリズムが (例えば周波数、振幅) の異なる面が多いリズムの生物学的デザインは、明確な細胞のタイプとネットワークのダイナミクスによってもたらされます。例えば、主細胞の突起をターゲットと抑制性介在ニューロンは、周波数帯、脳領域17,18, シータ1920、ガンマ20を含む最も重要な選手をします。,21日とリップル (140-200 Hz)22振動。ターンでは、離れた場所の細胞の位相同期は、堅牢なフィード フォワード信号錐体細胞の介在神経の発火をリセットによって保証されます。振動、同期ニューロン集団のサイズの重要なパラメーター測定 LFP 振動の振幅は密接な関係し、少なくとも高速振動2介在ニューロンに興奮性ドライブに依存します。対照的に、シータ、デルタなどの遅い振動は皮質視床23,24と海馬-内側中隔予測25,によって形成される長距離のリエントラント ループによって生成される26,27、それぞれ。このような回路の振動が信号伝搬遅延、興奮性の応答と周波数嗜好参加細胞28,29,30,の相互作用によってもたらされる31,32gaba 作動性パルブアルブミン (太陽光発電) から抑制性の投射-海馬25,33、海馬傍地域内嗅皮質26で介在する内側中隔 (MS) の細胞が陽性。内側側頭葉シータ振動の生成に不可欠。したがって、光遺伝学を用いたリアルタイム高精度ネットワーク振動・同期の神経の生理学的メカニズムを操作できます。

34,35,36,37,38 培養海馬と大脳皮質の振動やの研究のセル型固有の光遺伝学的操作を適用されています。生体内で30,39,40,41,42,43,44,45, 機能を含むガンマ5,12,36,46,47,48,49,50,の調査51,52とリップル振動40,53,54と睡眠のスピンドル、55,56。最近 PV Cre マウスの MS、海馬 θ リズムの生成のための重要な地域で Cre 依存 ChR2 ウイルスを表明しました。この準備を使用して、海馬シータ振動 (周波数と時間的安定性) の特徴は、海馬11MS の抑制性投射の光刺激によって制御されました。さらに、海馬海馬の抑制性投射のシータ振動への光刺激は目がさめている不動の中にシータを誘発しました。生じる気流 LFP および神経細胞の活動レベルでマウスで自発的なシータの θ リズムの表示プロパティです。

このプロトコルの主な機能: 海馬興奮性; 非特異的効果を回避しながら自発的なシータの重要な生理学的である抑制性経路の (1) の利用(2) 軸索、すなわち、非海馬 MS efferents; の直接影響を最小限に抑えるために特定の投影刺激(海馬海馬 θ リズムのダイナミクスとシータ振動の二国間の引き込みと直接干渉を最小限を確保 3) ローカルの θ リズム光刺激(4) パラメトリックな制御のシータ振動頻度および規則性;同調忠実高時間分解能 (5) 数量 LFP を使用して動物の行動に因果関係の定量的分析を有効にします。以来、この準備は、シータ世代25,30の脱抑制が海馬海馬のよく知られている役割を本質的に大文字、それはシータ振動動作マウスのいくつかのパラメーターのロバスト制御をできます。他より少ない調査経路および海馬海馬の細胞の種類はどこにいた研究操作38,39,47,49,50,51,52,53,54,55,56,57,58は θ リズムの機構をさらに明らかにします。

Protocol

太陽光発電 Cre ノックアウトの雄マウス5910-25 週齢が使用されました。マウスが動物施設における標準的な条件の下で収容され、12 時間の明暗サイクルし続けました。すべてのプロシージャは国内および国際的ガイドラインに従って行われ、地元の保健当局 (Landesamt für Natur、環 und Verbraucherschutz、ノルトライン ・ ヴェストファーレン州) によって承認されました。 <p class="…

Representative Results

セクション 1 で説明した MS の gaba 作動性セルに chr2 ターゲットは、図 2 aで示されています。背側海馬 CA1 領域の上移植は光ファイバー経由で MS gaba 作動性細胞の軸索の光遺伝学的刺激だけでなく、対側同側 (図 2 b) の刺激の周波数でシータをヘアレスします。半球 (図 2)。シータは、これの有効性は?…

Discussion

ここで私たちは同調行動中の動物の海馬シータを引き出す方法論が広くアクセスを発表しました。このアプローチは、情報処理や動作の θ の関数の研究に役立ちます。このメソッドの重要な側面が含まれます: (1) オプシンの選択と MS の軸索に chr2 ターゲット細胞海馬、継続的な刺激と LFP ように注入された光ファイバー線配列アセンブリの (2) 堅牢な光・電子機能マウス、シータ周波数で光?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

原稿のデータ分析による専門家の助けのためのマリア ・ Gorbati とコメントのジェニファー Kupferman に感謝したいと思います。この作品は、ドイツ研究振興協会 (DFG; によって支えられました。Exc 257 NeuroCure、TK と AP;優先順位プログラム 1665、1799/1-1(2)、ハイゼンベルグ プログラム、AP 1799/2-1)、ドイツ ・ イスラエル科学研究開発 (GIF; 財団私-1326-421.13/2015 年、TK) と人類のフロンティア ・ サイエンス ・ プログラム (HFSP;RGY0076/2012、TK)。

Materials

PV-Cre mice The Jackson Laboratory B6;129P2-Pvalbtm1(cre)Arbr/J
Name Company Catalog Number Comments
Surgery
Stereotaxis David Kopf Instruments, Tujunga, CA, USA Model 963 Ultra Precise Small Animal Stereotaxic Instrument
Drill bits, 0.8 mm Bijoutil, Allschwil, Switzerland 49080HM
0.01-1 ml syringe Braun, Melsungen, Germany 9161406V
Sterican cannulas Braun 26 G, 0.45×25 mm BL/LB
Fine and sharp scissors Fine Science Tools Inc., Vancouver, Canada 14060-09
Forceps Fine Science Tools Inc. 11210-10 Dumont AA – Epoxy Coated Forceps
Blunt stainless steel scissors Fine Science Tools Inc. 14018-14
Soldering station Weller Tools GmbH, Besigheim, Germany WSD 81
Erythromycin Rotexmedica GmbH, Trittau, Germany PZN: 10823932 1g Powder for Solution for Infusion
Name Company Catalog Number Comments
Optogenetics
Hamilton pump PHD Ultra, Harvard Apparatus, Holliston, MA, USA model 703008 PHD Ultra Syringe Pump with push/pull mechanism
Hamilton 5 µL Syringe, 26 gauge PHD Ultra, Harvard Apparatus Model 75 RN SYR
Hamilton 5 µL Plunger PHD Ultra, Harvard Apparatus Model 75 RN SYR
Tubing Fisher Scientific, Pittsburgh, USA PE 20 Inner diameter 0.38 mm (.015"), Outer diameter 1.09 mm (.043")
Sterican cannulas Braun, Melsungen, Germany 27 G, 25×0.40 mm, blunt
Precision drill/grinder Proxxon, Wecker, Luxemburg fbs 240/e
Cutting disks Proxxon NO 28812
Cre dependent channelrhodopsin Penn Vector Core, Philadelphia, PA, USA AV-1-18917P Contruct name: AAV2/1.CAGGS.flex.ChR2.tdTomato, titer: 1.42×1013 vg/ml
Cam kinase dependent halorhodopsin Penn Vector Core AV-1-26971P Construct name: eNpHR3.0, AAV2/1.CamKIIa.eNpHR3.0-EYFP.WPRE.hGH, titer: 2.08_1012 vg/ml
Multimode optic fiber ThorLabs, Dachau, Germany FG105LCA 0.22 NA, Low-OH, Ø105 µm Core, 400 – 2400 nm
Ceramic stick ferrule Precision Fiber Products, Milpitas, CA, USA CFLC126 Ceramic LC MM Ferrule, ID 126um
Polishing paper Thorlabs LF3D 6" x 6" Diamond Lapping (Polishing) Sheet
Power meter Thorlabs PM100D Compact Power and Energy Meter Console, Digital 4" LCD
Multimode fiber optic coupler Thorlabs FCMM50-50A-FC 1×2 MM Coupler, 50:50 Split Ratio, 50 µm GI Fibers, FC/PC
Fiberoptic patch cord Thorlabs FG105LCA CUSTOM-MUC custom made, 3 m long, with protective tubing, Tubing: FT030, Connector 1: FC/PC, Connector 2: 1.25mm (LC) Ceramic Ferrule
Sleeve Precision Fiber Products, Milpitas, CA, USA ADAL1 Ceramic Split Mating Sleeve for Ø1.25 mm (LC/PC) Ferrules
473 nm DPSS laser Laserglow Technologies, Toronto, ON, Canada R471005FX LRS-0473 Series
593 nm DPSS laser Laserglow Technologies R591005FX LRS-0594 Series
MC_Stimulus II Multichannel Systems, Reutlingen, Germany STG 4004
Impedance conditioning module Neural microTargeting worldwide, Bowdoin, USA ICM
Name Company Catalog Number Comments
Electrophysiology
Tungsten wires California Fine Wire Company, Grover Beach, CA, USA CFW0010954 40 µm, 99.95%
Capillary tubing Optronics 1068150020 ID: 100.4 µm
Omnetics nanoconnector Omnetics Connector Corporation, Minneapolis, USA A79038-001
Screws Bilaney, Düsseldorf, Germany 00-96×1/16 stainless-steel
Silicone probe NeuroNexus Technologies, Ann Arbor, MI, USA B32
Headstage Neuralynx, Bozeman, Montana USA HS-8 miniature headstage unity gain preamplifiers
Silver conductive paint Conrad electronics, Germany 530042
Liquid flux Felder GMBH Löttechnik, Oberhausen, Germany Lötöl ST DIN EN 29454.1, 3.2.2.A (F-SW 11)
LED Neuralynx HS-LED-Red-omni-10V
Name Company Catalog Number Comments
Software
MATLAB Mathworks, Natick, MA, USA
MC_Stimulus software Multichannel, Systems
Neurophysiological Data Manager NDManager, http://neurosuite.sourceforge.net
Klusters http://neurosuite.sourceforge.net, Hazan et al., 2006
Software of the recording system Neuralynx Cheetah https://neuralynx.com/software/cheetah
Multi-channel data analysis software Cambridge Electronic Design Limited, Cambridge, GB Spike2

References

  1. Salinas, E., Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2 (8), 539-550 (2001).
  2. Buzsaki, G., Wang, X. J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 35, 203-225 (2012).
  3. Cannon, J., et al. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci. 39 (5), 705-719 (2014).
  4. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 32, 209-224 (2009).
  5. Cardin, J. A., et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 459 (7247), 663-667 (2009).
  6. Colgin, L. L., et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 462 (7271), 353-357 (2009).
  7. Csicsvari, J., Jamieson, B., Wise, K. D., Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 37 (2), 311-322 (2003).
  8. Gray, C. M., Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 86 (5), 1698-1702 (1989).
  9. Lisman, J. E., Jensen, O. The theta-gamma neural code. Neuron. 77 (6), 1002-1016 (2013).
  10. Sirota, A., et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron. 60 (4), 683-697 (2008).
  11. Bender, F., et al. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nat Commun. 6, 8521 (2015).
  12. Carus-Cadavieco, M., et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature. 542 (7640), 232-236 (2017).
  13. Bragin, A., Engel, J., Wilson, C. L., Fried, I., Buzsaki, G. High-frequency oscillations in human brain. Hippocampus. 9 (2), 137-142 (1999).
  14. Wang, J., et al. High-frequency oscillations in Parkinson’s disease: spatial distribution and clinical relevance. Mov Disord. 29 (10), 1265-1272 (2014).
  15. Hammond, C., Bergman, H., Brown, P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30 (7), 357-364 (2007).
  16. Buzsaki, G. Theta oscillations in the hippocampus. Neuron. 33 (3), 325-340 (2002).
  17. Gulyas, A. I., et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature. 366 (6456), 683-687 (1993).
  18. Buhl, E. H., et al. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol. 71 (4), 1289-1307 (1994).
  19. Wulff, P., et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A. 106 (9), 3561-3566 (2009).
  20. Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J., Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron. 68 (3), 557-569 (2010).
  21. Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H., Buzsaki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci. 23 (3), 1013-1018 (2003).
  22. Racz, A., Ponomarenko, A. A., Fuchs, E. C., Monyer, H. Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells. J Neurosci. 29 (8), 2563-2568 (2009).
  23. Contreras, D., Steriade, M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 15 (1 Pt 2), 604-622 (1995).
  24. Herrera, C. G., et al. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 19 (2), 290-298 (2016).
  25. Freund, T. F., Antal, M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336 (6195), 170-173 (1988).
  26. Unal, G., Joshi, A., Viney, T. J., Kis, V., Somogyi, P. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. J Neurosci. 35 (48), 15812-15826 (2015).
  27. Hangya, B., Borhegyi, Z., Szilagyi, N., Freund, T. F., Varga, V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J Neurosci. 29 (25), 8094-8102 (2009).
  28. Bartho, P., et al. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron. 82 (6), 1367-1379 (2014).
  29. Giocomo, L. M., et al. Grid cells use HCN1 channels for spatial scaling. Cell. 147 (5), 1159-1170 (2011).
  30. Stark, E., et al. Inhibition-induced theta resonance in cortical circuits. Neuron. 80 (5), 1263-1276 (2013).
  31. Crandall, S. R., Cruikshank, S. J., Connors, B. W. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron. 86 (3), 768-782 (2015).
  32. Steriade, M., McCormick, D. A., Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science. 262 (5134), 679-685 (1993).
  33. Joshi, A., Salib, M., Viney, T. J., Dupret, D., Somogyi, P. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area. Neuron. , (2017).
  34. Schlingloff, D., Kali, S., Freund, T. F., Hajos, N., Gulyas, A. I. Mechanisms of sharp wave initiation and ripple generation. J Neurosci. 34 (34), 11385-11398 (2014).
  35. Craig, M. T., McBain, C. J. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. J Neurosci. 35 (8), 3616-3624 (2015).
  36. Pastoll, H., Solanka, L., van Rossum, M. C., Nolan, M. F. Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron. 77 (1), 141-154 (2013).
  37. Akam, T., Oren, I., Mantoan, L., Ferenczi, E., Kullmann, D. M. Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling. Nat Neurosci. 15 (5), 763-768 (2012).
  38. Mattis, J., et al. Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. J Neurosci. 34 (35), 11769-11780 (2014).
  39. Vandecasteele, M., et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A. 111 (37), 13535-13540 (2014).
  40. Stark, E., et al. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron. 83 (2), 467-480 (2014).
  41. Blumberg, B. J., et al. Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement. Physiol Rep. 4 (23), (2016).
  42. Courtin, J., et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature. 505 (7481), 92-96 (2014).
  43. Nagode, D. A., Tang, A. H., Yang, K., Alger, B. E. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1. J Physiol. 592 (1), 103-123 (2014).
  44. Bitzenhofer, S. H., et al. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat Commun. 8, 14563 (2017).
  45. Kondabolu, K., et al. Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits. Proc Natl Acad Sci U S A. 113 (22), E3159-E3168 (2016).
  46. Sohal, V. S., Zhang, F., Yizhar, O., Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 459 (7247), 698-702 (2009).
  47. Pina-Crespo, J. C., et al. High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J Neurosci. 32 (45), 15837-15842 (2012).
  48. Iaccarino, H. F., et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 540 (7632), 230-235 (2016).
  49. Kim, H., Ahrlund-Richter, S., Wang, X., Deisseroth, K., Carlen, M. Prefrontal Parvalbumin Neurons in Control of Attention. Cell. 164 (1-2), 208-218 (2016).
  50. Lu, Y., et al. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. J Neurophysiol. 113 (10), 3574-3587 (2015).
  51. Kim, T., et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A. 112 (11), 3535-3540 (2015).
  52. Siegle, J. H., Pritchett, D. L., Moore, C. I. Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat Neurosci. 17 (10), 1371-1379 (2014).
  53. Gan, J., Weng, S. M., Pernia-Andrade, A. J., Csicsvari, J., Jonas, P. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In. Neuron. 93 (2), 308-314 (2017).
  54. van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K., Dupret, D. Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples. Neuron. 92 (5), 968-974 (2016).
  55. Kim, A., et al. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc Natl Acad Sci U S A. 109 (50), 20673-20678 (2012).
  56. Latchoumane, C. V., Ngo, H. V., Born, J., Shin, H. S. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. Neuron. 95 (2), 424-435 (2017).
  57. Robinson, J., et al. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms. J Neurosci. 36 (10), 3016-3023 (2016).
  58. Fuhrmann, F., et al. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron. 86 (5), 1253-1264 (2015).
  59. Hippenmeyer, S., et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3 (5), e159 (2005).
  60. Resendez, S. L., et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc. 11 (3), 566-597 (2016).
  61. Armstrong, C., Krook-Magnuson, E., Oijala, M., Soltesz, I. Closed-loop optogenetic intervention in mice. Nat Protoc. 8 (8), 1475-1493 (2013).
  62. Buzsaki, G., et al. Multisite recording of brain field potentials and unit activity in freely moving rats. J Neurosci Methods. 28 (3), 209-217 (1989).
  63. Vandecasteele, M., et al. Large-scale recording of neurons by movable silicon probes in behaving rodents. J Vis Exp. (61), e3568 (2012).
  64. Hazan, L., Zugaro, M., Buzsaki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J Neurosci Methods. 155 (2), 207-216 (2006).
  65. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 8 (9), 1263-1268 (2005).
  66. Korotkova, T., et al. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev. , (2017).
  67. Vertes, R. P., Hoover, W. B., Viana Di Prisco, G. Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev. 3 (3), 173-200 (2004).
  68. Hasselmo, M. E., Hay, J., Ilyn, M., Gorchetchnikov, A. Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw. 15 (4-6), 689-707 (2002).
  69. Witt, A., et al. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study. Front Neural Circuits. 7, 49 (2013).
  70. Korotkova, T., Ponomarenko, A. . In Vivo Neuropharmacology and Neurophysiology. , (2017).
  71. Dannenberg, H., et al. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci. 35 (22), 8394-8410 (2015).
  72. Pikovsky, A., Rosenblum, M., Kurths, J. . Synchronization: A universal concept in nonlinear sciences. 70, (2002).
  73. Boyce, R., Glasgow, S. D., Williams, S., Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 352 (6287), 812-816 (2016).

Play Video

Cite This Article
Bender, F., Korotkova, T., Ponomarenko, A. Optogenetic Entrainment of Hippocampal Theta Oscillations in Behaving Mice. J. Vis. Exp. (136), e57349, doi:10.3791/57349 (2018).

View Video