Summary

细胞外囊储存稳定性的评价

Published: May 22, 2019
doi:

Summary

在这里, 我们提出了一个易于应用的协议, 以评估细胞外囊泡的储存稳定性, 一组自然发生的纳米颗粒产生的细胞。囊泡中含有葡萄糖苷酶作为模型酶, 并在不同条件下储存。储存后, 对其理化参数和包封酶的活性进行了评价。

Abstract

细胞外囊泡 (Ev) 是目前研究的目标, 可用作药物、药物载体和生物标志物。对于他们的临床发展, 不仅他们的药物活性很重要, 他们的生产也需要评估。在此背景下, 研究的重点是电动车的隔离、特性和存储。本手稿旨在提供一个简单的程序, 以评估不同的存储条件对 Ev 的影响, 而无需基因操纵或特定的功能检测。这样就可以快速获得在给定存储条件下电动车稳定性的第一印象, 并且可以很容易地比较来自不同细胞源的电动车。稳定性测量是基于 Ev 的物理化学参数 (大小、颗粒浓度和形态) 和保持其货物的活性。后者是由皂甙介导的酶β-葡萄糖苷酶封装到 Ev 中进行评估的。葡萄糖苷酶作为一个替代品, 并允许一个简单的定量, 通过荧光记者分子的裂解。目前的协议可以成为研究人员寻找最佳保持 EV 特性的存储条件的工具, 以推进 EV 研究的临床应用。

Introduction

Ev 是由几乎所有细胞类型产生的膜结合纳米粒子。对于哺乳动物细胞, ev 可以细分为两个主要组, 具有不同的生产途径1,2。膜囊泡的大小范围约为100-1000 纳米, 是通过细胞膜的直接萌发而产生的。外质体, 大小30-200 纳米, 是从由内芽形成的多囊体形成的外质体, 随后与细胞膜融合, 同时释放多个外质体。这些囊泡的主要功能是细胞3之间的信息传输。为此, 对 RNA、DNA 和蛋白质等货物进行了积极的分类。电动车可以对其目标传递各种影响, 对健康和疾病状态都有影响。一方面, 他们介导阳性效应, 如组织再生, 抗原表达, 或抗生素的影响, 使他们的发展吉祥的目标, 作为治疗方法4,5。另一方面, Ev 能促进肿瘤血管化6, 诱导旁观者在应激反应中的作用 7, 并可能在自身免疫性疾病8和炎症性疾病9中起到一定作用。因此, 它们可能是更好地了解许多病理影响的关键组成部分。然而, 在癌症101112 和心血管疾病13等多种疾病中, 发生了改变后的电动车, 而且在血液和尿液容易获得这些疾病, 使其成为理想的生物 标志 物。最后, 它们良好的生物相容性14和固有的靶向能力使电动车对药物输送也很有趣。在这篇手稿中, 我们描述了一个评估从哺乳动物细胞中提取的 Ev 的存储稳定性的协议, 这是一个重要的性质, 目前还很少被研究。

对于电动车的临床发展, 仍有许多障碍要克服 16, 包括对其治疗效果的评价、生产、净化和储存1 7。虽然-80°c 被广泛视为 EV 存储18的黄金标准, 但所需的冰柜成本很高, 从生产到患者, 维护所需的冷链可能具有挑战性。此外, 一些报告表明, 在-80°c 下的存储仍然不能最佳地保留电动车, 并导致 ev 功能的损失19,20。其他方法, 如冷冻干燥21,22或喷雾干燥 23, 已被提出作为潜在的替代品冷冻储存的电动车。

评估储存稳定性的最佳方法是测试功能检测中的 ev, 或通过评估特定标记 (例如, 其抗菌活性19) 来测试 ev。当知道水泡的预期效果, 当一个不同的一组电动车要研究时, 这是可能的。如果要比较来自不同细胞源的 Ev (例如, 用于药物封装), 或者没有已知的功能读数, 则无法再直接评估由于存储而产生的变化。

另一方面, 简单地评估其物理化学参数的变化, 如大小、颗粒恢复和蛋白质浓度, 并不总是预测 EV 活性的变化, 最近的专利20就表明了这一点。

在这里, 我们提供了一个易于应用的协议, 通过评估其物理化学参数与封装的β-葡萄糖酶酶作为电动车货物的替代品的活性来测量其储存稳定性。酶的负荷是通过皂甙的培养完成的, 这是一种用来自不同来源212425 的电动车建立的温和方法。皂甙在 EV 膜中形成短暂的毛孔, 使酶被吸收到囊泡中。由于酶在不受储存条件的影响时容易失去活性, 它们是评估电动车功能货物保存情况的理想替代品。

我们已经证明, 该方案的应用对来自人间充质干细胞 (MSCs)、人脐静脉内皮细胞 (Huvec) 和人腺癌肺泡上皮细胞 (A549) 的 Ev 确实导致了巨大的差异。不同细胞系之间的存储稳定性, 在选择 EV 源21时应考虑到这一点。

Protocol

1. 细胞培养和细胞调节培养基的生产 一般情况下, 在各自细胞系所需的个别条件下培养细胞。 在无血清条件下或含有 EV-depleted 耗尽的胎儿牛血清 (FBS) 中培养24-72 小时的细胞。注: 如果使用 EV-D20E fbs, 请采用一种经证明可以有效耗尽血清的方法, 以防止牛血清衍生的 Ev26污染。 从烧瓶中收集介质。以 300 x g离心10分钟将细胞颗粒状。小心收集细胞条?…

Representative Results

图 1显示了与 huvec 隔离的 ev 的存储特性。用 UC 分离出的电动车, 对葡萄糖苷酶进行了包封, 并在证交会后, 用 NTA 对纯化后的电动车的理化性质进行了评价。随后对囊泡样品进行了 AF4 纯化, 并测定了葡萄糖苷酶活性。 然后将囊泡在4°c 或-80°c 和4°c 以冻干形式储存 7 d, 在后一种情况下, 添加4% 的海藻糖。储存后, 用 NTA 再次测定囊泡, 在 AF4 后, 对每个颗粒剩余的葡?…

Discussion

在这篇手稿中, 我们提出了一个全面的协议, 研究在不同的存储条件下的电动车的稳定性。该协议结合了封装的葡萄糖苷酶作为功能读数, 并对电动车的物理化学参数进行了评估, 从而可以对电动车进行简单的存储稳定性评估, 并对不同细胞的电动车进行比较线。SEM 和 TEM 作为互补方法, 可以深入了解 Ev 在单粒子水平上的变化。这里给出的结果表明, 由于没有低温保护剂的冻干, 电动车和脂质体有聚?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

德国联邦教育和研究部的 NanoMatFutur 初级研究方案 (赠款编号 13XP5029 a) 支持这项工作。Maximilian Richter 由德国学术奖学金基金会 (Studienstiftung des Deutschen Volkes) 通过博士奖学金提供支助。

Materials

1,2 dimyristoyl-sn glycero-3-phospho-choline (DMPC) Sigma-Aldrich P2663-25MG
1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) Sigma-Aldrich P4329-25MG
225 cm² cell culture flasks Corning 431082 Used with 25 ml of medium
30 kDa regenerated cellulose membrane Wyatt Technology Europe 1854
350 µm spacer Wyatt Technology Europe
Automated fraction collector Thermo Fisher Scientific
Beta-glucuronidase Sigma-Aldrich G7646-100KU
Chloroform Fisher scientific C/4966/17
Column oven Hitachi High-Technologies Europe
D-(+)-Trehalose dihydrate Sigma-Aldrich T9531-10G
DAWN HELEOS II, Multi-angle light scattering detector  Wyatt Technology Europe
Durapore Membrane filter, PVDF,  0,1 µm, 47 mm Merck VVLP04700 Used for the preparation of buffers for AF4
EBM-2 Lonza Verviers, S.p.r. CC-3156 Endothelial Cell Growth basal medium, used for the serum free culture of HUVEC cells
Eclipse dualtec Wyatt Technology Europe
EGM-2 Lonza Verviers, S.p.r. CC-3162 Endothelial Cell Growth medium, used for the normal culture of HUVEC cells
ELISA Plate Sealers R&D Systems DY992 used for sealing of 96-well plates for the glucuronidase assay
Ethanol Fisher scientific E/0665DF/17
Extruder Set With Holder/Heating Block Avanti Polar Lipids 610000-1EA
Filter support Avanti Polar Lipids 610014-1EA used for liposome preparation
Fluorescein di-β-D-glucoronide Thermo Fisher Scientific F2915
Gibco PBS-tablets+CA10:F36 Thermo Fisher Scientific 18912014
Hettich Universal 320 R Andreas Hettich GmbH & Co.KG Used for pelleting cells at 300 g
Hettich Rotina 420 R Andreas Hettich GmbH & Co.KG Used for pelleting larger debris at 3000 g
HUVEC cells Lonza Verviers, S.p.r. C2517A
Kimble  FlexColumn 1X30CM Kimble 420401-1030
Lyophilizer ALPHA 2-4 LSC Christ
Microcentrifuge Tubes, Polypropylene VWR international 525-0255 the tubes used for all EV-handling, found to be more favorable than comparable products from other suppliers regarding particle recovery
Nanosight LM14 equipped with a green laser Malvern Pananalytical
Nanosight-software version 3.1 Malvern Pananalytical
Nucleopore 200 nm track-etch polycarbonate membranes Whatman/GE Healthcare 110406 used for liposome preparation
PEEK Inline filter holder Wyatt Technology Europe
Phosphotungstic acid hydrate Sigma-Aldrich 79690-25G
Polycarbonate bottles for ultracentrifugation Beckman Coulter 355622
QuantiPro BCA Assay Kit Sigma-Aldrich QPBCA-1KT
Saponin Sigma-Aldrich 47036
Scanning electron microscopy Zeiss EVO HD 15 Carl Zeiss AG
Sepharose Cl-2b GE Healthcare 17014001
SEM copper grids with carbon film Plano S160-4
Small AF4 channel Wyatt Technology Europe
Sputter-coater Q150R ES Quorum Technologies
Transmission electron microscopy JEOL JEM 2011 Oxford Instruments
Type 45 Ti ultracentrifugation rotor Beckman Coulter 339160
Ultimate 3000 Dionex autosampler Thermo Fisher Scientific
Ultimate 3000 Dionex isocratic pump Thermo Fisher Scientific
Ultimate 3000 Dionex online vacuum degasser Thermo Fisher Scientific
Ultracentrifuge OptimaTM L-90 K Beckman Coulter
UV detector Thermo Fisher Scientific
Whatman 0.2 µm pore size mixed cellulose filter Whatman/GE Healthcare 10401712 Used for the filtration of all buffers used with the EVs and in SEC

References

  1. Stremersch, S., De Smedt, S. C., Raemdonck, K. Therapeutic and diagnostic applications of extracellular vesicles. Journal of Controlled Release. 244, 167-183 (2016).
  2. Fuhrmann, G., Herrmann, I. K., Stevens, M. M. Cell-derived vesicles for drug therapy and diagnostics: Opportunities and challenges. Nano Today. 10 (3), 397-409 (2015).
  3. Goes, A., Fuhrmann, G. Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infectious Diseases. 4 (6), 881-892 (2018).
  4. György, B., Hung, M. E., Breakefield, X. O., Leonard, J. N. Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions. Annual Review of Pharmacology and Toxicology. 55, 439-464 (2015).
  5. Schulz, E., et al. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. Journal of Controlled Release. 290, 46-55 (2018).
  6. Feng, Q., et al. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nature Communications. 8, 14450 (2017).
  7. Bewicke-Copley, F., et al. Extracellular vesicles released following heat stress induce bystander effect in unstressed populations. Journal of Extracellular Vesicles. 6, 1340746 (2017).
  8. Xu, Y., et al. Macrophages transfer antigens to dendritic cells by releasing exosomes containing dead-cell-associated antigens partially through a ceramide-dependent pathway to enhance CD4(+) T-cell responses. Immunology. 149 (2), 157-171 (2016).
  9. Buzas, E. I., György, B., Nagy, G., Falus, A., Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nature Reviews Rheumatology. 10, 356 (2014).
  10. Rajappa, P., et al. Malignant Astrocytic Tumor Progression Potentiated by JAK-mediated Recruitment of Myeloid Cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 23 (12), 3109-3119 (2017).
  11. Umezu, T., et al. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124 (25), 3748-3757 (2014).
  12. Costa-Silva, B., et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology. 17 (6), 816-826 (2015).
  13. Boulanger, C. M., Loyer, X., Rautou, P. -. E., Amabile, N. Extracellular vesicles in coronary artery disease. Nature Reviews Cardiology. 14, 259 (2017).
  14. Zhu, X., et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. Journal of Extracellular Vesicles. 6 (1), 1324730 (2017).
  15. Vader, P., Mol, E. A., Pasterkamp, G., Schiffelers, R. M. Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews. 106, 148-156 (2016).
  16. Ingato, D., Lee, J. U., Sim, S. J., Kwon, Y. J. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. Journal of Controlled Release. 241, 174-185 (2016).
  17. Gimona, M., Pachler, K., Laner-Plamberger, S., Schallmoser, K., Rohde, E. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. International Journal of Molecular Sciences. 18 (6), 1190 (2017).
  18. Jeyaram, A., Jay, S. M. Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications. The AAPS Journal. 20 (1), 1 (2017).
  19. Lőrincz, &. #. 1. 9. 3. ;. M., et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. Journal of Extracellular Vesicles. 3, 25465 (2014).
  20. Kreke, M., Smith, R., Hanscome, P., Peck, K., Ibrahim, A. Processes for producing stable exosome formulations. US patent. , (2016).
  21. Frank, J., et al. Extracellular vesicles protect glucuronidase model enzymes during freeze-drying. Scientific Reports. 8 (1), 12377 (2018).
  22. Charoenviriyakul, C., Takahashi, Y., Nishikawa, M., Takakura, Y. Preservation of exosomes at room temperature using lyophilization. International Journal of Pharmaceutics. 553 (1), 1-7 (2018).
  23. Kusuma, G. D., et al. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Frontiers in Pharmacology. 9 (1199), (2018).
  24. Haney, M. J., et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release. 207, 18-30 (2015).
  25. Fuhrmann, G., Serio, A., Mazo, M., Nair, R., Stevens, M. M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. Journal of Controlled Release. 205, 35-44 (2015).
  26. Théry, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  27. Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W. G., Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. Journal of Extracellular Vesicles. 2 (1), 19671 (2013).
  28. Vestad, B., et al. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. Journal of Extracellular Vesicles. 6 (1), 1344087 (2017).
  29. Bosch, S., et al. Trehalose prevents aggregation of exosomes and cryodamage. Scientific Reports. 6, 36162 (2016).
  30. Bhattacharjee, S. DLS and zeta potential – What they are and what they are not. Journal of Controlled Release. 235, 337-351 (2016).
  31. Van Deun, J., et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. Journal of Extracellular Vesicles. 3 (1), 24858 (2014).
  32. Taylor, D. D., Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 87, 3-10 (2015).
  33. Patel, D. B., et al. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioengineering & Translational Medicine. 2 (2), 170-179 (2017).
  34. Gardiner, C., et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles. 5 (1), 32945 (2016).
  35. Zhang, H., et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology. 20 (3), 332-343 (2018).
  36. Linares, R., Tan, S., Gounou, C., Arraud, N., Brisson, A. R. High-speed centrifugation induces aggregation of extracellular vesicles. Journal of Extracellular Vesicles. 4 (1), 29509 (2015).
  37. Lobb, R. J., et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles. 4, 27031 (2015).

Play Video

Cite This Article
Richter, M., Fuhrmann, K., Fuhrmann, G. Evaluation of the Storage Stability of Extracellular Vesicles. J. Vis. Exp. (147), e59584, doi:10.3791/59584 (2019).

View Video