Summary

Generation af svin testikel Organoider med testis specifik arkitektur ved hjælp af Microwell Culture

Published: October 03, 2019
doi:

Summary

Here, we present a protocol for the reproducible generation of porcine testicular organoids with testis specific tissue architecture using the commercially available microwell culture system.

Abstract

Organoider er tre dimensionelle strukturer bestående af flere celletyper, der er i stand til at rekapitulere væv arkitektur og funktioner af organer in vivo. Dannelsen af organoider har åbnet forskellige veje for grundlæggende og Translationel forskning. I de seneste år har testikel organoider høstet interesse i området for mandlig reproduktiv biologi. Testikel organoider giver mulighed for undersøgelse af celle-celle interaktioner, vævs udvikling, og kimcelle niche mikromiljø og lette høj gennemstrømning stof og toksicitet screening. En metode er nødvendig for pålideligt og reproducerbart generere testikel organoider med testikel specifikke væv arkitektur. Mikrobrøndens kultur system indeholder et tæt udvalg af pyramideformede mikrobrønde. Testikel celler afledt af præ-pubertale testiklerne centrifugeres ind i disse mikrobrønde og dyrkes for at generere testikel organoider med testis-specifikke væv arkitektur og celle foreninger. Tusindvis af homogene organoider kan genereres via denne proces. Den protokol, der rapporteres her, vil være af bred interesse for forskere, som studerer mandlig reproduktion.

Introduction

I de seneste år har der været en genopblussen af interesse i tredimensionale (3D) organoider. Forskellige organer såsom tarm1, mave2, bugspytkirtlen3,4, leveren5, og hjernen6 er blevet med succes afledt i 3D organoid systemer. Disse organoider har arkitektoniske og funktionelle ligheder med organerne in vivo og er mere biologisk relevante for undersøgelse af vævs mikromiljø end enkeltlags kultur systemer7. Som et resultat, testikel organoider er begyndt at samle interesse samt8,9,10,11,12. De fleste af metoder rapporteret indtil videre er komplekse, ikke-høj gennemløb10 og kræver tilsætning af ECM proteiner8,10. Denne kompleksitet fører også til problemer med reproducerbarhed. En enkel og reproducerbar metode er nødvendig, der giver mulighed for generering af testikel organoider med celle-foreninger, der er ligesom testikel in vivo.

Vi har for nylig rapporteret et system til at løse disse krav12. Ved hjælp af grisen som model anvendte vi en centrifugal tvungen aggregerings tilgang i strips med mikrobrønde-systemet. I strips med mikrobrønde-systemet indeholder hver brønd et stort antal identiske mindre mikrobrønde13. Dette giver mulighed for generering af talrige sfæroider af ensartet størrelse. Strips med mikrobrønde-systemet aktiverede generering af et stort antal ensartede organoider med en testis-specifik arkitektur. Systemet er simpelt og kræver ikke tilsætning af ECM-proteiner.

Protocol

NOTE: Testes from 1-week-old piglets were obtained from a commercial pig farm as by-product from castration of commercial pigs. Sourcing of testes was approved by the Animal Care Committee at the University of Calgary. 1. Preparation of enzyme solutions for tissue digestion NOTE: Three different enzymatic solutions are needed, which include two different collagenase IV solutions (solution A, B) and a deoxyribonuclease I (DNase I) solution. To prepare sol…

Representative Results

Isolated cells from 1-week old porcine testes that were cultured in the microwells self-organized into spheroids (Figure 1A, Figure 2), with delineated and distinct exterior (seminiferous epithelium) and interior compartments (interstitium) (Figure 1B, Figure 2). The two compartments were separated by a collagen IV+ve basement…

Discussion

We have established a simple method that allows the consistent, repeatable generation of large numbers of testicular organoids with tissue architecture that is similar to testis in vivo12. While the approach was developed using porcine testis cells, it is more broadly applicable also to mouse, non-human primate and human testis12. A number of different methods have been reported for producing testicular organoids8,9

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH/NICHD HD091068-01 to Dr. Ina Dobrinski.

Materials

100 mm ultra low attachment tissue culture dish Corning #CLS3262
100 mm tissue culture dish Corning #353803
Aggrwell 400 Stemcell Technologies #34411
Anti-Adherence Rinsing Solution Stemcell Technologies #07010
Collagenase type IV from Clostridium histolyticum Sigma-Aldrich #C5138 referred as Collagenase IV S
Collagenase type IV Worthington Worthington-Biochem #LS004189 referred as Collagenase IV W
Deoxyribonuclease I from bovine pancreas Sigma-Aldrich #DN25
Dulbecco’s Modified Eagle’s Medium/F12 Gibco #11330-032
Dulbecco’s Modified Eagle’s Medium – high glucose Sigma-Aldrich #D6429
Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich #D8537
Epidermal Growth Factor R&D Systems #236-EG
Falcon Cell Strainers 70 µm FisherScientific #352350
Falcon Cell Strainers 40 µm FisherScientific #352340
Fetal Bovine Serum ThermoFisher Scientific #12483-020
Insulin-Transferrin-Selenium Gibco #41400-045
Penicillin-Streptomycin Sigma-Aldrich #P4333
Porcine testicular tissue Sunterra Farms Ltd (Alberta, Canada)
Steriflip-GP Sterile Centrifuge Tube Top Filter Unit Millipore #SCGP00525
Trypsin-EDTA Sigma #T4049

References

  1. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  2. Barker, N., et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6 (1), 25-36 (2010).
  3. Huch, M., et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo Journal. 32 (20), 2708-2721 (2013).
  4. Boj, S. F., et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 160 (1-2), 324-338 (2015).
  5. Takebe, T., et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499 (7459), 481-484 (2013).
  6. Quadrato, G., et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 545 (7652), 48-53 (2017).
  7. Abbott, A. Cell culture: biology’s new dimension. Nature. 424 (6951), 870-872 (2003).
  8. Pendergraft, S. S., Sadri-Ardekani, H., Atala, A., Bishop, C. E. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitrodagger. Biology of Reproduction. 96 (3), 720-732 (2017).
  9. Strange, D. P., et al. Human testicular organoid system as a novel tool to study Zika virus pathogenesis. Emerging Microbes & Infections. 7 (1), 82-82 (2018).
  10. Alves-Lopes, J. P., Soder, O., Stukenborg, J. B. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials. 130, 76-89 (2017).
  11. Baert, Y., et al. Primary Human Testicular Cells Self-Organize into Organoids with Testicular Properties. Stem Cell Reports. 8 (1), 30-38 (2017).
  12. Sakib, S., et al. Formation of organotypic testicular organoids in microwell culture. Biology of Reproduction. , (2019).
  13. Razian, G., Yu, Y., Ungrin, M. Production of Large Numbers of Size-controlled Tumor Spheroids Using Microwell Plates. Journal of Visualized Experiments. (81), 50665 (2013).
  14. Sakib, S., et al. Formation of organotypic testicular organoids in microwell culture. Biology of Reproduction. 100 (6), 1648-1660 (2019).
  15. González, R., Dobrinski, I. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models. ILAR Journal. 56 (1), 83-98 (2015).
  16. Oatley, J. M., Brinster, R. L. The germline stem cell niche unit in mammalian testes. Physiological Reviews. 92 (2), 577-595 (2012).
  17. Chen, L. Y., Willis, W. D., Eddy, E. M. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proceedings of the National Academy of Science USA. 113 (7), 1829-1834 (2016).

Play Video

Cite This Article
Sakib, S., Yu, Y., Voigt, A., Ungrin, M., Dobrinski, I. Generation of Porcine Testicular Organoids with Testis Specific Architecture using Microwell Culture. J. Vis. Exp. (152), e60387, doi:10.3791/60387 (2019).

View Video