Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
JoVE Science Education Library
Environmental Science

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

Lead Analysis of Soil Using Atomic Absorption Spectroscopy

Lead Analysis of Soil Using Atomic Absorption Spectroscopy



The widespread use of paint and gasoline, along with industrial contamination, have caused elevated levels of lead in urban soil, which can lead to health problems.

Lead occurs naturally in soils, in levels ranging from 10 to 50 parts per million, or ppm. However, contaminated urban soils often have concentrated levels of lead, that are significantly greater than this background level- up to 10,000 ppm in some areas. These elevated lead levels are a concern as lead does not biodegrade, and instead remains in the soil.

Serious health risks are associated with lead poisoning, particularly in foods grown in contaminated soils and for children who come in contact with contamination. As a result, the Environmental Protection Agency has set a limit of 400 ppm in gardening and play areas, and 1,200 ppm in other areas.

The concentration of lead in soil can be determined using various elemental analysis techniques, such as atomic absorption spectroscopy. This video will introduce the principles of soil collection and the analysis of lead contamination in soil using atomic absorption spectroscopy.

Atomic absorption spectroscopy, or AAS, is an elemental analysis technique based on the absorption of discrete wavelengths of light by gas-phase atoms. For this, a hollow cathode lamp is used to emit light with a specific wavelength. The lamp consists of a hollow cathode, containing the element of interest, and an anode. When the element of interest is ionized by a high voltage, it emits light at a wavelength specific to that substance.

The sample, which as been previously digested in concentrated acid, is then introduced to the instrument in gaseous form, by way of a flame atomizer. Atoms of the element of interest absorb light emitted from the hollow cathode lamp. The energy absorbed excites the electrons in the target element to a higher energy state. The amount of light absorbed is proportional to the concentration of the element in the sample.

A standard curve, created from samples with known concentrations of the element, is used to determine the unknown concentration of the element in the sample. AAS provides quantitative information on at least 50 different elements. Concentrations as low as parts per billion can be determined for some elements, though measurement ranges of parts per million are most common for metals. This technique has many benefits in the analysis of lead in soil, as it measures the total concentration of lead, regardless of its form.

Now that the basics of lead analysis have been explained, the technique will be demonstrated in the laboratory.

To collect samples from cultivated soils such as vegetable gardens, use a soil auger. Collect the sample, and bring it back to the lab. To prepare the soil sample for digestion, mix it thoroughly by shaking for 2 min and pass it through a USS #10 sieve to remove larger chunks. Dry the sample in a 40 °C oven for 24 h.

Once dried, weigh out 1 g of the sample using an analytical balance, recording its weight to four decimal places. Place the soil in a digestion tube. In a chemical fume hood, add 5 mL of water to the digestion tube, followed by 5 mL of concentrated nitric acid. Mix the slurry using a stirring rod, and cover the tube with a teardrop stopper. Place the digestion tube in the block digester, heat it to 95 °C, and reflux for 10 min without boiling.

Remove the rack from the heat block, and allow the tube to cool. Then, add another 5 mL of concentrated nitric acid, replace the stopper, and reflux for an additional 30 min. If brown fumes are generated, repeat the acid addition and reflux.

Remove the stopper and let the solution evaporate to a volume of 5 mL, without boiling. Allow the tube to cool, then add 2 mL of distilled water and 3 mL of 30% hydrogen peroxide. Replace the stopper and heat to 95 °C until the bubbling stops, making sure the solution does not boil over. Allow the tube to cool. Repeat this heating-cooling cycle, using 1 mL of 30% hydrogen peroxide each, until the bubbling becomes minimal.

Once the tube is cooled, loosely cap the tube with the stopper and heat the solution without boiling until the volume is again reduced to 5 mL. Add 10 mL of concentrated hydrochloric acid, heat to 95 °C, and reflux for 15 min, then let the tube cool.

To remove any particulates from the solution, filter the solution using a glass fiber filter in a Büchner funnel setup. Then add distilled water to the filtrate to dilute its volume to 100 mL.

Once the sample has been prepared for analysis, turn on the AAS instrument and software. Refer to the text for details of the experimental parameters. In this demonstration, an air/acetylene flame is used with the lead protocol, with a hollow cathode lamp emitting at 217 nm.

Prepare a blank solution of nitric acid, the sample solution, and a 10-ppm lead standard sample. Turn on the flame and begin analyzing the samples. Start by inserting the pump tubing into the blank solution in order to "zero" the instrument. Continue for all samples.

The instrument automatically dilutes the lead standard to produce a calibration curve, and then automatically determines the concentration of lead in each measured sample. In this demonstration, the 100-mL sample was found to have a concentration of 6 mg/L, or 0.6 mg total. Using the mass of the initial soil sample before digestion, the concentration of lead in soil was found to be 479 ppm. This is above the EPA-recommended level for growing crops.

The analysis of lead and other elements with AAS can be used to answer a variety of questions in environmental science. The fate of other hazardous compounds that are applied to soils, such as fertilizers or pesticides, is not well understood. However, these compounds can pose hazards if they reach water sources through soil runoff. In this experiment, researchers analyzed layers of soil extracted from a pesticide treated lawn using AAS.

Results showed that the pesticide monosodium methyl arsenate leached through layers of soil to depths of 40 cm. The toxins remained within the soil for over a year, especially in soil systems with established roots from turf grass.

Another major source of heavy metal contamination in the environment is mercury, which accumulates in fish and shellfish. Various regulatory agencies have enacted guidelines or advisories to minimize human intake of mercury. Samples obtained from seafood can be analyzed with AAS to determine if their mercury levels exceed legal recommendations.

Finally, regulatory bodies, such as the US Environmental Protection Agency, or EPA, have published advisories for metals including lead, zinc, copper, nickel, cadmium, and manganese in water. AAS can be used to analyze the level of metallic elements in drinking water, which can have hazardous effects on human health. Drinking water samples are prepared for analysis by acid digestion and boiling.

Samples were then analyzed for metal contamination using AAS. The results showed that the drinking water contained less than 2 ppb of lead, well below the EPA limit of 15 ppb.

You've just watched JoVE's video on lead analysis of soil using AAS. You should now understand the principles behind this method of analysis; how to perform it; and some of its applications in environmental science. As always, thanks for watching!

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter