JoVE Science Education
Environmental Science
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Environmental Science
Lead Analysis of Soil Using Atomic Absorption Spectroscopy
  • 00:00Overview
  • 01:30Principles of Elemental Analysis by AAS
  • 03:19Sample Collection and Digestion
  • 05:47Analysis of the Sample with AAS
  • 07:11Applications
  • 09:14Summary

原子吸光分光法による土壌の鉛の分析

English

Share

Overview

マーガレット職人とキンバリー ・ フライ – デュポール大学のソース: 研究所

鉛は自然に発生する土壌、レベル 10 50 ppm に至る。しかし、業界によって塗料や汚染に加えてガソリン中の鉛の普及と都市土壌頻繁背景レベル-いくつかの場所で最大 10,000 ppm より大幅の鉛の濃度があります。継続的な問題は、鉛は生物分解しない代わりに土壌に残るという事実から生じる。

深刻な健康上のリスクは、子供が特に危険で、鉛中毒に関連付けられます。米国の子供たちの何百万人は、鉛を含む土壌に公開されます。この暴露は、子供の発達や行動の問題を可能性があります。これらの問題は、学習障害、不注意、遅延の成長、脳の損傷に含まれます。環境保護庁が遊び場と非遊び場の 1,200 ppm 400 ppm の濃度で土壌の鉛のための標準を設定します。

鉛は土壌、懸念も園芸のため使用するときです。植物は土壌から鉛を取る。したがって、野菜やハーブの栽培、土することができますリードする鉛中毒を汚染しました。さらに、汚染土壌粒子をガーデニングしながら息または衣類及び履物の家にできます。園芸のために鉛濃度 400 ppm を超えると土壌を使用しないことをお勧めします。鉛は葉で格納できるので 100 と 400 ppm の鉛濃度と土壌は緑豊かな野菜やハーブに使用されないことをさらにお勧めします。同様の注意根野菜べきであるないで成長させるこの土鉛も植物の根に蓄積されるので。

Principles

Procedure

1. 土壌の収集と準備 妨げられていないエリアの土の上の 1-2 インチから土壌を収集します。菜園をサンプリングする場合は、6 インチ深いサンプルを収集します。サンプル エリアから直径 1 インチの土壌コアを収集するのに土壌オーガーを使用します。 2 分を揺することによってサンプルを徹底的にミックスし、USS #10 フルイを使ってふるい。 24 h の 40 ° C のオーブン…

Results

The software creates the calibration curve and automatically determines the concentration of the Pb in the samples (Figure 2).

Figure 2
Figure 2. The calibration curve and the concentration of the Pb in the samples automatically determined by the software.

The values given on the worksheet are mg/L of Pb in the sample solution. Additional calculations must be done to convert this number to the ppm of Pb in the soil sample.

Example:

For a soil sample that weighed 1.2523 g before digestion was measured by the AAS to have 6.0 mg/L of Pb in the 100 mL solution sample (Table 1).

Equation 1

Soil Lead Level (ppm) Level of Contamination
Less than 150 None to very low
150-400 Low
400-1,000 Medium
1,000-2,000 High
Greater than 2,000 Very High

Table 1. Soil lead levels measured in ppm and the corresponding levels of contamination.

Applications and Summary

Atomic Absorption Spectrometry is a useful technique to analyze a wide range of environmental samples (e.g., water, soil, sludge, and sediment) for a large number of elements (e.g., heavy metals). This experiment highlights the use of flame AAS to determine the Pb content in soil. However, it could also be used to measure concentrations of Cu, Fe, Mn, K, Na, Mg, and Zn in soils.

Zinc is an important micronutrient and is needed for protein synthesis. Zn helps regulate the expression of genes needed to protect cells when under environmental stress conditions. Zinc deficiency is a large problem in crop and pasture plants around the world, resulting in decreased yields. It is estimated that half of all soils used for cereal production have a zinc deficiency. This leads to a zinc deficiency in the grain. As a result, zinc deficiency in humans is a serious nutritional problem worldwide, affecting 1/3 of the world’s population. A typical range of zinc in soils is 10 – 300 mg/kg with a mean of 55 mg/kg.

Iron is the fourth most abundant element on Earth. However, it is mostly found in forms not available for plants, such as in silicate minerals or iron oxides. Iron is involved in photosynthesis, chlorophyll formation, nitrogen fixation, and many enzymatic reactions in plants. Iron deficiency in soil is rare, but it can become unavailable in excessively alkaline soils. Symptoms of iron deficiency in soil include leaves turning yellow and a decrease in yield. A typical range of iron in soils is 100 – 100,000 ppm with a mean of 26,000 ppm.

Copper is an essential micronutrient for plants. Copper promotes seed production, plays a role in chlorophyll formation, and is essential for enzyme activity. Copper deficiency can be seen by light green to yellow leaves. The leaf tips die back and become twisted. If the deficiency is severe enough, growth of the grain can stop and the plants die. Available copper in soils can vary from 1 to 200 ppm. Availability of copper is related to the soil pH – as pH increases, the availability of copper decreases.

Atomic Absorption Spectrometry can also be used on non-environmental samples, including:

Water analysis (Ca, Mg, Fe, Al, Ba, Cr)

Food analysis (Cd, Pb, Al, Cu, Fe)

Additives in oils (Ba, Ca, Na, Li, Zn, Mg, V, Pb, Sb)

Fertilizers (K, B, Mo)

Clinical samples (blood, serum, plasma, urine, Ca, Mg, Li, Na, K, Fe, Cu, Zn, Au, Pb)

Cosmetics (Pb)

Mining (Au)

References

  1. Robinson, J.W., Skelly Frame, E.M., Frame II, G.M. Undergraduate Instrumental Analysis. 6th Ed. Marcel Dekker, New York (2005).
  2. United States Environmental Protection Agency. “Lead based paint poisoning prevention in certain residential structures.” CFR 40 Part 745. http://www.ecfr.gov. (2015).

Transcript

The widespread use of paint and gasoline, along with industrial contamination, have caused elevated levels of lead in urban soil, which can lead to health problems.

Lead occurs naturally in soils, in levels ranging from 10 to 50 parts per million, or ppm. However, contaminated urban soils often have concentrated levels of lead, that are significantly greater than this background level- up to 10,000 ppm in some areas. These elevated lead levels are a concern as lead does not biodegrade, and instead remains in the soil.

Serious health risks are associated with lead poisoning, particularly in foods grown in contaminated soils and for children who come in contact with contamination. As a result, the Environmental Protection Agency has set a limit of 400 ppm in gardening and play areas, and 1,200 ppm in other areas.

The concentration of lead in soil can be determined using various elemental analysis techniques, such as atomic absorption spectroscopy. This video will introduce the principles of soil collection and the analysis of lead contamination in soil using atomic absorption spectroscopy.

Atomic absorption spectroscopy, or AAS, is an elemental analysis technique based on the absorption of discrete wavelengths of light by gas-phase atoms. For this, a hollow cathode lamp is used to emit light with a specific wavelength. The lamp consists of a hollow cathode, containing the element of interest, and an anode. When the element of interest is ionized by a high voltage, it emits light at a wavelength specific to that substance.

The sample, which as been previously digested in concentrated acid, is then introduced to the instrument in gaseous form, by way of a flame atomizer. Atoms of the element of interest absorb light emitted from the hollow cathode lamp. The energy absorbed excites the electrons in the target element to a higher energy state. The amount of light absorbed is proportional to the concentration of the element in the sample.

A standard curve, created from samples with known concentrations of the element, is used to determine the unknown concentration of the element in the sample. AAS provides quantitative information on at least 50 different elements. Concentrations as low as parts per billion can be determined for some elements, though measurement ranges of parts per million are most common for metals. This technique has many benefits in the analysis of lead in soil, as it measures the total concentration of lead, regardless of its form.

Now that the basics of lead analysis have been explained, the technique will be demonstrated in the laboratory.

To collect samples from cultivated soils such as vegetable gardens, use a soil auger. Collect the sample, and bring it back to the lab. To prepare the soil sample for digestion, mix it thoroughly by shaking for 2 min and pass it through a USS #10 sieve to remove larger chunks. Dry the sample in a 40 °C oven for 24 h.

Once dried, weigh out 1 g of the sample using an analytical balance, recording its weight to four decimal places. Place the soil in a digestion tube. In a chemical fume hood, add 5 mL of water to the digestion tube, followed by 5 mL of concentrated nitric acid. Mix the slurry using a stirring rod, and cover the tube with a teardrop stopper. Place the digestion tube in the block digester, heat it to 95 °C, and reflux for 10 min without boiling.

Remove the rack from the heat block, and allow the tube to cool. Then, add another 5 mL of concentrated nitric acid, replace the stopper, and reflux for an additional 30 min. If brown fumes are generated, repeat the acid addition and reflux.

Remove the stopper and let the solution evaporate to a volume of 5 mL, without boiling. Allow the tube to cool, then add 2 mL of distilled water and 3 mL of 30% hydrogen peroxide. Replace the stopper and heat to 95 °C until the bubbling stops, making sure the solution does not boil over. Allow the tube to cool. Repeat this heating-cooling cycle, using 1 mL of 30% hydrogen peroxide each, until the bubbling becomes minimal.

Once the tube is cooled, loosely cap the tube with the stopper and heat the solution without boiling until the volume is again reduced to 5 mL. Add 10 mL of concentrated hydrochloric acid, heat to 95 °C, and reflux for 15 min, then let the tube cool.

To remove any particulates from the solution, filter the solution using a glass fiber filter in a Büchner funnel setup. Then add distilled water to the filtrate to dilute its volume to 100 mL.

Once the sample has been prepared for analysis, turn on the AAS instrument and software. Refer to the text for details of the experimental parameters. In this demonstration, an air/acetylene flame is used with the lead protocol, with a hollow cathode lamp emitting at 217 nm.

Prepare a blank solution of nitric acid, the sample solution, and a 10-ppm lead standard sample. Turn on the flame and begin analyzing the samples. Start by inserting the pump tubing into the blank solution in order to “zero” the instrument. Continue for all samples.

The instrument automatically dilutes the lead standard to produce a calibration curve, and then automatically determines the concentration of lead in each measured sample. In this demonstration, the 100-mL sample was found to have a concentration of 6 mg/L, or 0.6 mg total. Using the mass of the initial soil sample before digestion, the concentration of lead in soil was found to be 479 ppm. This is above the EPA-recommended level for growing crops.

The analysis of lead and other elements with AAS can be used to answer a variety of questions in environmental science. The fate of other hazardous compounds that are applied to soils, such as fertilizers or pesticides, is not well understood. However, these compounds can pose hazards if they reach water sources through soil runoff. In this experiment, researchers analyzed layers of soil extracted from a pesticide treated lawn using AAS.

Results showed that the pesticide monosodium methyl arsenate leached through layers of soil to depths of 40 cm. The toxins remained within the soil for over a year, especially in soil systems with established roots from turf grass.

Another major source of heavy metal contamination in the environment is mercury, which accumulates in fish and shellfish. Various regulatory agencies have enacted guidelines or advisories to minimize human intake of mercury. Samples obtained from seafood can be analyzed with AAS to determine if their mercury levels exceed legal recommendations.

Finally, regulatory bodies, such as the US Environmental Protection Agency, or EPA, have published advisories for metals including lead, zinc, copper, nickel, cadmium, and manganese in water. AAS can be used to analyze the level of metallic elements in drinking water, which can have hazardous effects on human health. Drinking water samples are prepared for analysis by acid digestion and boiling.

Samples were then analyzed for metal contamination using AAS. The results showed that the drinking water contained less than 2 ppb of lead, well below the EPA limit of 15 ppb.

You’ve just watched JoVE’s video on lead analysis of soil using AAS. You should now understand the principles behind this method of analysis; how to perform it; and some of its applications in environmental science. As always, thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Lead Analysis of Soil Using Atomic Absorption Spectroscopy. JoVE, Cambridge, MA, (2023).

Related Videos