-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Neuroscience
Cochlear Implant Surgery and Electrically-evoked Auditory Brainstem Response Recordings in C57BL/...
Cochlear Implant Surgery and Electrically-evoked Auditory Brainstem Response Recordings in C57BL/...
JoVE Journal
Neuroscience
This content is Free Access.
JoVE Journal Neuroscience
Cochlear Implant Surgery and Electrically-evoked Auditory Brainstem Response Recordings in C57BL/6 Mice

Cochlear Implant Surgery and Electrically-evoked Auditory Brainstem Response Recordings in C57BL/6 Mice

Full Text
14,287 Views
09:06 min
January 9, 2019

DOI: 10.3791/58073-v

Charlotte Amalie Navntoft1,2, Jeremy Marozeau1, Tania Rinaldi Barkat2

1Hearing Systems Group, Department of Electrical Engineering,Technical University of Denmark, 2Brain and Sound Lab, Department of Biomedicine,Basel University

Summary

Animal models of cochlear implants can advance knowledge of the technological bases of treating permanent sensorineural hearing loss with electrical stimulation. This study presents a surgical protocol for acute deafening and cochlear implantation of an electrode array in mice as well as the functional assessment with auditory brainstem response.

Transcript

Animal models of cochlear implants can advance our knowledge of the technological basis of treating permanent sensory neural hearing loss with electric stimulation. This protocol demonstrates acute deafening and cochlear implantation in the mouse. And the functional assessment of cochlear implant stimulation with auditory brain stem response.

Some main challenges of performing cochlear implant surgery in mice are the small size of the cochlea and the presence of the large stapedial artery near the round window niche. To measure the normal hearing status, load acoustic foam into a one milliliter syringe and inject 100 to 200 microliters of foam into the contralateral ear canal of an anesthetized eight to twelve week old C57 black 6 mouse to isolate the auditory brain stem response from the ipsilateral ear, taking care that the syringe seals closely to the ear for delivery of the foam all the way into the ear canal. Next, place a speaker 10 centimeters from the ipsilateral ear and clean the aVR electrodes with 70%ethanol.

Place the reference electrode under the skin below the pinna of the ipsilateral ear and the active electrode under the skin of the vertex. The put the ground electrode under the skin of the hind leg. Connect the headstage and preamplifier to the auditory processor via the optic fiber port.

And check the impedance of the active and reference electrodes. When the electrodes display the same impedance, close the soundproof booth and present the click stimulation. Recording the aVR in a free field condition with an appropriate complex auditory processor and software.

Standardize the click stimulus to 0.1 milliseconds single channel monophasic clicks presented at 21 hertz with a decreasing click level from 90 decibels of sound pressure level to 10 decibels of sound pressure level in 10 decibel steps in a 10 millisecond recording window. Then determine the aVR threshold as the lowest decibel level with a recognizable aVR wave response. To induce the deafening, place the mouse on its right side taking care to keep the body straight so the airways remain open.

Remove the fur behind the ipsilateral ear and disinfect the exposed skin with sequential 70%ethanol solution and a Povidone-Iodine Solution Scrubs. Move the animal under a dissecting microscope and use the 16 times objective and a scalpel to make a one to one and a half centimeter postauricular incision. Under a 25 to 40x magnification, use forceps to blunt dissect through the exposed subcutaneous fat layer and retract the sternocleidomastoid muscle to reveal the timpanic bulla periosteum.

The facial nerve wraps around the posterior dorsal edge of the sternocleidomastoid muscle and runs rostrally along the ear canal toward the pinna. Using the facial nerve as a landmark for identification of the auditory bulla gently place a self-retaining retractor tool into the incision for access to the bulla. Remove the tissue overlying the mediodorsal area of the bulla to allow clear visualization of the ridge between the bulla and the mastoid process and gentle rotate a 30 guage needle into the bulla to generate a hole on the posterior superior side of the ridge.

Pinch small bone pieces with fine tipped forceps to widen the bullastomy until the middle ear cavity is exposed. And extend the hole dorsally toward the mastoid process until the round window niche is clear of overlying bone. The most critical step is the preparation of the window niche.

Be sure to take your time as so not to damage the stapedial artery. Taking care not to damage the stapedial artery, extend the bullastomy in the anterior superior direction to visualize the stapes, the middle ear bone connected to the oval window. Then remove the stapes to expose the oval window.

To apply the ototoxic agent, use a blunted 30 guage needle to gently perforate the round and oval window membranes, confirming that the perilymph runs out. And use a one milliliter syringe equipped with a 30 gauge needle to slowly perfuse 0.2 milliliters of 5%weight by volume neomycin dissolved in PBS through the oval window. When the entire volume of agent has been delivered profuse the solution into the round window taking care not to damage the window bone structures.

And place one square millimeter pieces of spongostan soaked in neomycin within the round window and oval window niche. Then remove the retractor and close the incision, recording a post-deafening acoustic aVR as demonstrated after 30 minutes. To insert the cochlear implant electrode array, place the retractor tool back into the incision to re-access the bulla and insert the electrode array into the scala tympani at a depth such that the fourth platinum ring of the array is located just inside the round window.

The insertion of the electrode array can also be tricky. So take your time to find a good insertion angle using one forcep tool to lead wire and another to insert the array. Coil the lead wire inside the bulla and glue the wire to the tissue above the bulla.

After carefully removing the retractor and closing the insertion with tissue glue, use a scalepel to make a 0.5 millimeter incision in the neck, perpendicular to the line between where the active and reference aVR electrodes will be. Place the ground ball in the insertion and connect the electrode array board to the animal stimulator platform. To perform and electric aVR, place the electrodes as previously demonstrated and open the animal stimulator platform software.

Then define the electric pulse stimulation paradigm and present the electric pulse trains recording the evoked electric aVR responses continuously via the TBT Headstage, preamplifier, and auditory processor. Pre and post surgical hearing thresholds serve as a functional readout of the deafening procedure. Topical application of 5%neomycin to the oval and round windows significantly increases the clicked evoked hearing thresholds.

Electric stimulation of an intracochlear electrode post deafening can reliably generate electric aVR activity. In some cases, cochlear implant stimulation activates the facial nerve and produces a high amplitude wave with either a short latency characterized by a rapid amplification of Wave III around three milliseconds and likely a direct response of the facial nerve, or a long latency which appears around five to six milliseconds and is likely to be a non auditory myogenic response, invoked indirectly by the facial nerve. In this study we have demonstrated that the cochlear implant mouse model is feasible also the cochlear implant is small and the surgery:challenging.

While attempting this procedure, it's important to consider a deafening protocol to eliminate any electrophonic responses in the aVR recordings and to mimic the hair cell loss found in most C.I.users. In summary, the growing number of genetic models of human deafness and the biomedical tools available in mice makes us an attractive animal model for the tool research including for cochlear implants.

Explore More Videos

Cochlear ImplantAuditory Brainstem ResponseC57BL/6 MiceDeafeningCochlear ImplantationAcute DeafeningFunctional AssessmentCochlear Implant SurgeryAuditory Brain Stem ResponseHearing LossElectric StimulationAnimal ModelStapedial ArteryRound Window NicheClick StimulusAVR Threshold

Related Videos

Subdural Implantation of a Soft Electrocorticography Array for Cortical Electrophysiology Recording in Minipigs

04:00

Subdural Implantation of a Soft Electrocorticography Array for Cortical Electrophysiology Recording in Minipigs

Related Videos

315 Views

Investigating Auditory Neuronal Responses in an Awake Mouse in the Presence of an Inhibitory Neurotransmitter Blocker

02:58

Investigating Auditory Neuronal Responses in an Awake Mouse in the Presence of an Inhibitory Neurotransmitter Blocker

Related Videos

276 Views

Direct Visualization of the Murine Dorsal Cochlear Nucleus for Optogenetic Stimulation of the Auditory Pathway

07:58

Direct Visualization of the Murine Dorsal Cochlear Nucleus for Optogenetic Stimulation of the Auditory Pathway

Related Videos

9.5K Views

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

09:18

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

Related Videos

13.6K Views

Morphological and Functional Evaluation of Ribbon Synapses at Specific Frequency Regions of the Mouse Cochlea

09:54

Morphological and Functional Evaluation of Ribbon Synapses at Specific Frequency Regions of the Mouse Cochlea

Related Videos

12.2K Views

Data Acquisition and Analysis In Brainstem Evoked Response Audiometry In Mice

08:51

Data Acquisition and Analysis In Brainstem Evoked Response Audiometry In Mice

Related Videos

12K Views

An Integrated Method for Crafting Flexible and Convenient Electrophysiological Optrodes for Multi-Region In Vivo Recording

06:55

An Integrated Method for Crafting Flexible and Convenient Electrophysiological Optrodes for Multi-Region In Vivo Recording

Related Videos

982 Views

Cochlear Implant Surgery and Electrically-evoked Auditory Brainstem Response Recordings in C57BL/6 Mice

09:06

Cochlear Implant Surgery and Electrically-evoked Auditory Brainstem Response Recordings in C57BL/6 Mice

Related Videos

14 Views

Recording Electrically-Evoked Auditory Brainstem Responses in a Deafened Mouse

01:07

Recording Electrically-Evoked Auditory Brainstem Responses in a Deafened Mouse

Related Videos

167 Views

Recording Electrically-Evoked Auditory Brainstem Responses in a Deafened Mouse

02:43

Recording Electrically-Evoked Auditory Brainstem Responses in a Deafened Mouse

Related Videos

443 Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code