-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Neuroscience
Imaging of Intracellular ATP in Organotypic Tissue Slices of the Mouse Brain using the FRET-based...
Imaging of Intracellular ATP in Organotypic Tissue Slices of the Mouse Brain using the FRET-based...
JoVE Journal
Neuroscience
This content is Free Access.
JoVE Journal Neuroscience
Imaging of Intracellular ATP in Organotypic Tissue Slices of the Mouse Brain using the FRET-based Sensor ATeam1.03YEMK

Imaging of Intracellular ATP in Organotypic Tissue Slices of the Mouse Brain using the FRET-based Sensor ATeam1.03YEMK

Full Text
10,099 Views
11:20 min
December 19, 2019

DOI: 10.3791/60294-v

Rodrigo Lerchundi*1, Karl W. Kafitz*1, Marcel Färfers1, Felix Beyer2, Na Huang1, Christine R. Rose1

1Institute of Neurobiology,Heinrich Heine University Düsseldorf, 2Department of Neurology,Düsseldorf University Hospital

Summary

We describe a protocol for cell-type specific expression of the genetically encoded FRET-based sensor ATeam1.03YEMK in organotypic slice cultures of the mouse forebrain. Furthermore, we show how to use this sensor for dynamic imaging of cellular ATP levels in neurons and astrocytes.

Transcript

Here we demonstrate how to employ the ATP-sensitive FRET sensor ATeam 1.03 YEMK for dynamic measurements of changes in neuronal and astrocytic ATP levels in organotypically cultured mouse hippocampal slices. The main advantage of this technique is that the one can study energy metabolism in living brain tissue in a controlled setting, an environment with high sensor expression levels. This technique may help in gaining insights into pathomechanisms, underlying diseases, or brain damage, for example, caused by energy deprivation, like ischemic stroke.

It can, in principle, be used to study ATP levels, not only in brain tissue, but in other organs as well. To successfully run this experiment, it is essential to perform all steps involved in culturing the tissue extremely careful and to maintain sterility. Moreover, some knowledge of cellular fluorescent imaging is required.

Tissue handling in most sophisticated approach and a visualization is vital to understand the proper procedures. The same is true for imaging experiments. Demonstrating the procedure will be Rodrigo Lerchundi, a postdoc, and Na Huang, a Master student from the laboratory.

In an ice-cold Petri dish filled with ACSF, place the brain on a filter membrane. Separate the hemispheres and perform a parasagittal cut at an angle of 45 degrees. Fix one hemisphere at the Vibratome tissue stage with superglue, and immediately transfer the tissue block to the Vibratome bath containing ice-cold ACSF bubbled with 5%carbon dioxide and 95%oxygen.

Align the tissue in the Vibratome bath. Keep the second hemisphere in ice-cold ACSF until slicing. Adjust the Vibratome to cut slices at 250 to 400 micrometers.

After cutting the slice, identify the hippocampal formation based on its typical morphological appearance and isolate it using hypodermic needles, keeping the part of the cerebral cortex adjacent to the hippocampus. Place the slice on a mesh in ACSF, warmed to 34 degrees Celsius and bubbled with 5%carbon dioxide and 95%oxygen until all the slices are collected. Transfer the slices to the laminar flow cabinet to continue under sterile conditions.

With an inverted, sterile, glass Pasteur pipette, gently transfer the slices from the ACSF into one of the pre-warmed Petri dishes filled with sterile Hanks'salt solution. Change the pipette and transfer the slices to the second culture dish. Repeat the process five times overall.

Transfer as little HBSS as possible to the following culture plates. Using a pipette, gently place one slice at a time on the top of the culture insert. Avoid turbulences in the pipette, and wait until the slice descends to the tip of the Pasteur pipette.

Repeat the process for each slice. Place two slices on a membrane. Carefully remove any excess Hank solution from the top of the insert by using a fine tip.

Keep the cultures in a humidified incubator at 5%carbon dioxide and 37 degrees Celsius until the day of the experiment. Replace the medium every two to three days. Without touching the tissue, apply 0.5 microliters of the diluted vector directly to the top of each slice.

Finally, place the slices back into the incubator and maintain them there for at least six more days. Just before starting an experiment, transfer an insert containing cultured slices into the sterile hood, and place it into a 30 millimeter dish containing one milliliter of organotypic slice culture medium, or minimal essential medium. Place the dish under the stereoscope and focus onto the surface of the slice.

Use two sterile hypodermic needles to make a short cross-cut right on the narrow edges of a chosen slice, and in the upper layer without damaging the tissue underneath. To remove the prepared slice from the insert, hold the edges of the membrane with tweezers and use a sterile scalpel to make straight, parallel cuts to the membrane, forming a square or a triangle with the slice in the center. If the insert hosts additional slices, transfer it back to the original plate and into the incubator.

The surface tension of the medium will prevent its leakage onto the surface of the membrane. Prepare experimental ACSF and obtain a pH of 7.4 by bubbling it with 95%oxygen and 5%carbon dioxide through an inserted tubing connected to the carbogen supply for at least thirty minutes. Keep the saline bubbled during the entire experiment.

Then switch on the fluorescent light source of the monochrometer. Transfer the organotypic slice culture into the experimental chamber. Place a grid on top of the organotypic slice culture with the frame down, not touching the culture, and the threads up, touching the membrane.

Place the chamber on the microscope stage and connect it to the perfusion system. Switch on the peristaltic pump at a flow rate of 1.5 to 2.5 milliliters per minute. Make sure there is no leaking of the perfusion system.

Using transmission light, bring the cultured slice into focus and identify the area where experiments shall be performed. Before starting imaging experiments, wait at least 15 minutes to allow slices to adapt to the saline conditions, then switch on the camera and the imaging software. Excite the donor fluorescent protein at 435 nanometers.

Set the exposure time to between 40 to 90 milliseconds. Then insert the dichroic mirror and the filters into the beam splitter unit. Split the fluorescence emission at 500 nanometers with an emission image splitter, and employ band pass filters at 482 plus or minus 16 and 542 plus or minus 13.5 nanometers to further isolate donor and acceptor fluorescence.

Select a region of interest apparently devoid of cellular fluorescence for background subtraction. Circle single structures of labeled tissue in the image on the screen to create ROIs. Set the frequency of image acquisition and the overall recording time.

For experiments longer than 30 minutes, an acquisition frequency of 0.2 to 0.5 Hertz is recommended to prevent phototoxicity. Subsequently, start the recording. To induce changes in intracellular ATP, switch the perfusion tube from standard ACSF to a saline containing metabolic inhibitors, for example, chemical ischemia solution.

Alternatively, use a saline with elevated potassium concentration at eight millimolar to mimic release of potassium ion from active neurons. Directly after the recordings, exchange the experimental ACSF with heaps-buffered ACSF. Then transfer the recording chamber containing the slice culture to the confocal laser scan microscope.

Take Z stack images at the highest Z resolution possible at the given optical configuration. In this protocol, ten days after a transduction, neurons expressing ATeam 1.03 YEMK were found at high density in the neocortex of cultured tissue slices at depths of up to 50 micrometers below the slice surface. Comparable results were achieved in the hippocampus.

For astrocytes, ATeam 1.03 YEMK was expressed under the control of the human glial fibrolary acidic protein promoter, and organotypic slices expressing ATeam 1.03 YEMK in the hippocampal neurons selected ROIs represent the somata of pyramidal cells. After exposing the slice to 5 millimolar sodium azide in the absence of extracellular glucose for one minute, opposite changes were induced in the emission intensity of the FRET pair. A reversible decrease in the ATeam FRET ratio was also observed.

Long-term ATeam FRET ratio in 14 different cells under baseline conditions in neurons and astrocytes show that the ATeam is a reliable and stable sensor. Please note that the chemical ischemia resulted in the expected strong drop in the ATeam ratio in both cell types at the end of this experiment. An increase in the extracellular potassium concentration from three to eight millimolar for three minutes did not result in a detectable change in the neurons expressing ATeam 1.03 YEMK.

In contrast, astrocytes reacted to the increase in extracellular potassium by a reversible increase in the ATeam FRET ratio, indicating an increase in intracellular ATP levels. Again, chemical ischemia caused an immediate decrease in the ATeam ratio, demonstrating that the sensor can detect changes in ATP. When attempting FRET-based cellular imaging as described here, it's important to keep in mind that the production of high-quality slices in organotypic cultures is a key step.

Moreover, careful removal of the glial scar and expert-level imaging are required. Following this procedure, one should also be able to perform experiment incorporating different other FRET-based nanosensor for cellular metabolites. For example, those for glucose or lactate.

Last, but not least, it needs to be emphasized that relevant acts for protection of animals must always be observed. This is also true for the effective laws governing the handling of genetically modified organisms.

Explore More Videos

Intracellular ATPMouse BrainFRET SensorATeam 1.03 YEMKNeuronal ATP LevelsAstrocytic ATP LevelsEnergy MetabolismIschemic StrokeCellular Fluorescent ImagingHippocampal SlicesVibratome CuttingSterile ConditionsMorphological Appearance

Related Videos

Organotypic Slice Culture of GFP-expressing Mouse Embryos for Real-time Imaging of Peripheral Nerve Outgrowth

05:42

Organotypic Slice Culture of GFP-expressing Mouse Embryos for Real-time Imaging of Peripheral Nerve Outgrowth

Related Videos

16.4K Views

An Organotypic Slice Assay for High-Resolution Time-Lapse Imaging of Neuronal Migration in the Postnatal Brain

10:41

An Organotypic Slice Assay for High-Resolution Time-Lapse Imaging of Neuronal Migration in the Postnatal Brain

Related Videos

12.2K Views

Functional Calcium Imaging in Developing Cortical Networks

16:33

Functional Calcium Imaging in Developing Cortical Networks

Related Videos

39.3K Views

Confocal Imaging of Mitochondrial Movement within Oligodendrocytes in Organotypic Brain Slice Cultures

04:11

Confocal Imaging of Mitochondrial Movement within Oligodendrocytes in Organotypic Brain Slice Cultures

Related Videos

288 Views

Time-lapse Confocal Imaging of Migrating Neurons in Organotypic Slice Culture of Embryonic Mouse Brain Using In Utero Electroporation

13:33

Time-lapse Confocal Imaging of Migrating Neurons in Organotypic Slice Culture of Embryonic Mouse Brain Using In Utero Electroporation

Related Videos

11.3K Views

Visualization and Live Imaging of Oligodendrocyte Organelles in Organotypic Brain Slices Using Adeno-associated Virus and Confocal Microscopy

08:38

Visualization and Live Imaging of Oligodendrocyte Organelles in Organotypic Brain Slices Using Adeno-associated Virus and Confocal Microscopy

Related Videos

11.1K Views

Modified Roller Tube Method for Precisely Localized and Repetitive Intermittent Imaging During Long-term Culture of Brain Slices in an Enclosed System

09:52

Modified Roller Tube Method for Precisely Localized and Repetitive Intermittent Imaging During Long-term Culture of Brain Slices in an Enclosed System

Related Videos

10.9K Views

Two-photon Imaging of Microglial Processes' Attraction Toward ATP or Serotonin in Acute Brain Slices

07:27

Two-photon Imaging of Microglial Processes' Attraction Toward ATP or Serotonin in Acute Brain Slices

Related Videos

10.1K Views

Array Tomography Workflow for the Targeted Acquisition of Volume Information using Scanning Electron Microscopy

09:47

Array Tomography Workflow for the Targeted Acquisition of Volume Information using Scanning Electron Microscopy

Related Videos

5.1K Views

Time-Lapse Imaging of Migrating Neurons and Glial Progenitors in Embryonic Mouse Brain Slices

04:17

Time-Lapse Imaging of Migrating Neurons and Glial Progenitors in Embryonic Mouse Brain Slices

Related Videos

1.3K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code