-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Immunology and Infection
Isolation of Uterine Innate Lymphoid Cells for Analysis by Flow Cytometry
Isolation of Uterine Innate Lymphoid Cells for Analysis by Flow Cytometry
JoVE Journal
Immunology and Infection
This content is Free Access.
JoVE Journal Immunology and Infection
Isolation of Uterine Innate Lymphoid Cells for Analysis by Flow Cytometry

Isolation of Uterine Innate Lymphoid Cells for Analysis by Flow Cytometry

Full Text
5,073 Views
09:02 min
October 14, 2021

DOI: 10.3791/62670-v

Delphine M. Depierreux*1,2, Emily Seshadri*1,2, Evgeniya V. Shmeleva*1,2, Jens Kieckbusch1,2, Delia A. Hawkes1, Francesco Colucci1,2

1Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre,University of Cambridge School of Clinical Medicine, 2Centre for Trophoblast Research,University of Cambridge

Summary

This is a method to isolate uterine lymphoid cells from both pregnant and non-pregnant mice. This method can be used for multiple downstream applications such as FACS phenotyping, cell sorting, functional assays, RNA-seq, and proteomics. The protocol here demonstrates how to phenotype group 1 uterine innate lymphoid cells by flow cytometry.

Transcript

Our method enables assessment of the composition and functional characteristics of different lymphocytes subpopulations present in the uterine tissue of pregnant and non-pregnant animals. This protocol allows for isolation of uterine lymphocytes while preserving surface expression of protein, cell viability, and functionality. Therefore it is suitable for a range of subsequent applications.

Fetus removal at the beginning of the experiment and leukocyte collection are technically challenging steps. Since it is a lengthy experiment, particular attention and focus are needed once you've reached the antibody staining steps. To begin, transfer the uterus tissue harvested from a pregnant C57 black six female mouse into a sterile petri dish, then using sterile instruments gently remove the fat surrounding the tissue, taking care not to let the tissue dry.

Remove the fetuses by dissecting each implantation site with sterile instruments, then return the uterus to its original five milliliter collection tube containing one milliliter of collection media. Using scissors, mince the tissue in the collection tube, then place the tube in a 37 degrees Celsius water bath. Next add three milliliters of pre warmed enzymatic digestion mix to the tube.

Incubate the tube for 30 minutes at 37 degrees Celsius with agitation to enhance the enzymatic digestion activity. After the incubation is complete, vortex the tube, and keep it on ice to inhibit the enzymatic activity, then transfer the digestive tissue into a properly labeled 15 milliliter centrifuge tube. Rinse the five milliliter collection tube with a total of 10 milliliters of ice cold five millimolar EDTA PBS solution to collect all the remaining tissue and transfer it into the 15 milliliter centrifuge tube.

Centrifuge the digested tissue sample for 10 minutes at 400 times G.Discard the supernatant, gently flick the pellet, and then resuspended in 10 milliliters of pre-warmed five millimolar EDTA PBS solution. To reduce cell clumping, incubate the sample at 37 degrees Celsius with agitation, followed by vortexing on high for 10 seconds. For removing cell clumps in undeassociated tissue, place a 70 micrometer strainer on top of a sterile 50 milliliter centrifuge tube, then using the plunger of a sterile one milliliter syringe, force the digested tissue through the strainer into the tube.

Wash the strainer several times with a total of 10 milliliters of cold PBS to collect all the cells, then spend the 50 milliliter centrifuge tube for 10 minutes at 400 times G.After discarding the supernatant, the innate lymphoid cells may be isolated using either option A or option B.For option A, resuspend the pellet in five milliliters of 80%isotonic per call using a pipette voy. Then using the pipette voy on slow speed, carefully overlay eight milliliters, 40%per call solution, onto the resuspended pellet in a 15 milliliter centrifuge tube. Pipette slowly and continuously, holding the 15 milliliter to about a 45 degree angle.

Without disturbing the overlay, centrifuge the tube for 20 minutes at 850 times G with medium acceleration and minimum breaks at room temperature. Once the centrifugation is complete, carefully remove the tube from the centrifuge without disturbing the per call layers. Next without disturbing the ring of leukocytes at the interface of the two per call solutions, use a sterile pasteur pipette to discard all except 0.5 to one milliliter of the top per call layer.

While trying to keep the amount of per call solution sucked into the pipette to a minimum, carefully collect the ring of leukocytes, and transfer the cells into a new labeled 15 milliliter centrifuge tube. Add 10 milliliters of sterile RPMI medium supplemented with 10%heat and activated FBS to the cells, then centrifuge the cells for five minutes at 500 times G and four degrees Celsius. Discard the supernatant and proceed to red blood cell lysis.

To isolate the cells using option B, after passing the digested tissue through the cell strainer and centrifuging the result in cell suspension as demonstrated previously, resuspend the pellet with eight milliliters of 35%isotonic per call and RPMI medium, and transfer the cells into a 15 milliliter tube. Centrifuge the tube at 940 times G for 10 minutes at room temperature with medium acceleration and minimum breaks. Then using an aspirator or pipette voy, aspirate the supernatant carefully before resuspending the pellet in 14 milliliters of RPMI medium supplemented with 10%heat and activated FBS.

Centrifuge the sample again for five minutes at 500 times G and four degrees Celsius, then discard the supernatant by aspiration and proceed to red blood cell lysis. To lyse the red blood cells, resuspend the sample in three milliliters of one X red blood cell lysing solution and incubate for three minutes at room temperature, then add 10 milliliters of PBS into the sample to stop the reaction. Centrifuge the tube at 400 times G for five minutes after discarding the supernatant, add another 10 milliliters of PBS and repeat centrofugation.

Resuspend the pellet in one milliliter of RPMI medium supplemented with 10%heat inactivated FBS, then pass the in cell suspension through a sterile 70 micrometers cell strainer. After counting the cells adjust the concentration of the cell suspension to one to 2 million cells in 100 microliters of PBS and proceed to staining and facs analysis. Uterine group one ILCs include conventional NK cells, tissue resident NK cells, and group one ILCs with their percentages varying during life and pregnancy.

These subsets can be discriminated using flow cytometry by first gating cells on their ability to scatter light, then isolating single buyable CD 45 positive CD three negative CD 19 negative cells, and then identifying group one ILCs that are NK 1.1 and NKP 46 positive. Within group one ILCs, CD49A negative EMs positive are conventional NK cells. CD49A positive Ems positive cells are tissue resident NK cells.

And CD49 positive Ems negative cells are group one uterine ILCs. Staining of splenic and uterine lymphocytes with anti NK P46 and anti NK 1.1 antibodies shows that the splenic lymphocytes express higher amounts of NKP 46 on their surface than their uterine counterpart. In enzymatic tissue dissociation, surface epitopes can be altered depending on the enzymes used in the digestion medium.

For example, staining for the MHC CD49 NKG2A receptor is poor when liberase TM is used. However digestion with liberase DH preserves NKG2A recognition by the 1611 antibody clone. Around 6.5%of group one ILCs present in uterine tissue samples at gestation day 8.5 are blood derived.

Blood contaminants can be excluded through intravital staining with anti CD45 antibodies conjugated with a fluorochrome. When setting up for time meetings, you must take into consideration that mice are nocturnal. Therefore they should be set up as late as possible in the afternoon as mating will occur during the night.

Also when selecting females, you must ensure that they do not have a vaginal septum. We typically do flow cytometry analysis to look at many proteins on the outside of the cells and within the cells. We also do nucleic acid extraction to study gene expression, including RNA sequencing.

And we also do manage to around functional assays to study the responses of uterine innate lymphoid cells.

Explore More Videos

Uterine Innate Lymphoid CellsFlow CytometryLymphocyte SubpopulationsPregnant AnimalsLeukocyte CollectionAntibody StainingEnzymatic DigestionC57 Black Six MouseCentrifuge ProtocolCell ViabilityEDTA PBS SolutionCell Clumping Removal

Related Videos

Isolation of Lymphocytes from Mouse Genital Tract Mucosa

04:46

Isolation of Lymphocytes from Mouse Genital Tract Mucosa

Related Videos

14.6K Views

Isolation of Murine Lymph Node Stromal Cells

05:47

Isolation of Murine Lymph Node Stromal Cells

Related Videos

31.6K Views

Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples

12:34

Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples

Related Videos

19.4K Views

Isolation of Infiltrating Leukocytes from Mouse Skin Using Enzymatic Digest and Gradient Separation

07:11

Isolation of Infiltrating Leukocytes from Mouse Skin Using Enzymatic Digest and Gradient Separation

Related Videos

21.7K Views

Isolation and Flow Cytometric Characterization of Murine Small Intestinal Lymphocytes

08:14

Isolation and Flow Cytometric Characterization of Murine Small Intestinal Lymphocytes

Related Videos

28K Views

Isolation and Flow Cytometric Analysis of Human Endocervical Gamma Delta T Cells

08:10

Isolation and Flow Cytometric Analysis of Human Endocervical Gamma Delta T Cells

Related Videos

8.9K Views

Isolating Lymphocytes from the Mouse Small Intestinal Immune System

11:28

Isolating Lymphocytes from the Mouse Small Intestinal Immune System

Related Videos

55.1K Views

Determination of Regulatory T Cell Subsets in Murine Thymus, Pancreatic Draining Lymph Node and Spleen Using Flow Cytometry

08:06

Determination of Regulatory T Cell Subsets in Murine Thymus, Pancreatic Draining Lymph Node and Spleen Using Flow Cytometry

Related Videos

11.8K Views

Isolation of Mouse Kidney-Resident CD8+ T cells for Flow Cytometry Analysis

06:07

Isolation of Mouse Kidney-Resident CD8+ T cells for Flow Cytometry Analysis

Related Videos

7K Views

Flow Cytometric Analysis for Identification of the Innate and Adaptive Immune Cells of Murine Lung

09:57

Flow Cytometric Analysis for Identification of the Innate and Adaptive Immune Cells of Murine Lung

Related Videos

7.2K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code