High Frequency Ultrasound for the Analysis of Fetal and Placental Development In Vivo

This article has been accepted and is currently in production

Abstract

Ultrasound imaging is a widespread method used to detect organ anomalies and tumors in human and animal tissues. The method is non-invasive, harmless, and painless, and the application is easy, fast, and can be done anywhere, even with mobile devices. During pregnancy, ultrasound imaging is standardly used to closely monitor fetal development. The technique is important to assess intrauterine growth restriction (IUGR), a pregnancy complication with short- and long-term health consequences for both the mother and fetus. Understanding the process of IUGR is indispensable for developing effective therapeutic strategies.

The ultrasound system used in this manuscript is an ultrasound device produced for the analysis of small animals and can be used in various research fields, including pregnancy research. Here we describe the usage of the system for in vivo analysis of fetuses from natural killer (NK) cell/mast cell (MC)-deficient mothers that give birth to growth-restricted pups. The protocol includes preparation of the system, handling of the mice before and during measurements, and the usage of the B-mode, color doppler mode, and pulse-wave doppler mode. Fetal size, placental size, and blood supply to the fetus were analyzed. We found reduced implantation sizes and smaller placentas in NK/MC-deficient mice from mid-gestation onwards. In addition, MC/NK-deficiency was associated with absent and reversed end diastolic flow in the fetal Arteria umbilicalis(UmA) and an elevated resistance index. The methods described in the protocol can easily be used for related and non-related research topics.