A High-content Assay for Monitoring AMPA Receptor Trafficking

This article has been accepted and is currently in production

Abstract

Postsynaptic trafficking of receptors to and from the cell surface is an important mechanism by which neurons modulate their responsiveness to different stimuli. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which are responsible for fast excitatory synaptic transmission in neurons, are trafficked to and from the postsynaptic surface to dynamically alter neuronal excitability. AMPA receptor trafficking is essential for synaptic plasticity and can be disrupted in neurological disease. However, prevalent approaches for quantifying receptor trafficking ignore entire receptor pools, are overly time- and labor-intensive, or potentially disrupt normal trafficking mechanisms and therefore complicate the interpretation of resulting data. We present a high-content assay for the quantification of both surface and internal AMPA receptor populations in cultured primary hippocampal neurons using dual fluorescent immunolabeling and a near-infrared fluorescent 96-well microplate scanner. This approach facilitates the rapid screening of bulk internalized and surface receptor densities while minimizing sample material. However, our method has limitations in obtaining single-cell resolution or conducting live cell imaging. Finally, this protocol may be amenable to other receptors and different cell types, provided proper adjustments and optimization.