REV免疫沈殿と質量分析によるHIV-1複製中のヌクレオール因子の同定

Immunology and Infection

Your institution must subscribe to JoVE's Immunology and Infection section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Summary

ここでは、質量分析のためのHIV-1複製の存在下でのRev免疫沈殿について説明する。記載された方法は、HIV-1感染サイクルに関与するヌクレオラー因子の同定に使用することができ、研究中の経路の特徴付けのための他の疾患モデルに適用可能である。

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Arizala, J. A., Chomchan, P., Li, H., Moore, R., Ge, H., Ouellet, D. L., Rossi, J. J. Identification of Nucleolar Factors During HIV-1 Replication Through Rev Immunoprecipitation and Mass Spectrometry. J. Vis. Exp. (148), e59329, doi:10.3791/59329 (2019).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

HIV-1感染サイクルは、ウイルスの複製、包装、および放出を容易にするために、宿主因子とのウイルスタンパク質相互作用を必要とする。感染サイクルはさらに、スプライシングを調節し、ヌクレオサイトプラズム輸送を可能にするために、HIV-1 RNAを用いたウイルス/宿主タンパク質複合体の形成を必要とする。HIV-1 Revタンパク質は、イントロニックシス-作用型標的-Rev応答元素(RRE)との多層化を通じてHIV-1 mRNAの核輸出を達成する。核色の局在シグナル(NoLS)は、Revアルギニン豊富なモチーフ(ARM)のCOOH終位内に存在し、核内のRev/RRE複合体の蓄積を可能にする。核因子因子は、mRNAに依存しない核輸出およびスプライシングを媒介することに加えて、様々な他の機能を通じてHIV-1感染サイクルをサポートすると推測される。質量分析のためのHIV-1複製の存在下で、Revヌクレオラー変異(欠失および単一点Rev-NoLS変異)と比較して、野生型(WT)Revの免疫沈殿法について述べるとよ。ヌクレオ細胞性輸送に関与するヌクレオロール因子(ヌクレオホスミンB23およびヌクレオリンC23)ならびに細胞スプライシング因子は、Rev-NoLS変異の存在下でRevとの相互作用を失う。snoRNA C/Dボックス58のような様々な他の核因子は、Rev変異との相互作用を失うことが同定されるが、HIV-1複製サイクルにおけるその機能は未知のままである。ここで提示された結果は、HIV-1感染サイクルを維持するウイルス/宿主ヌクレオロール因子の同定にこのアプローチを使用することを示す。このアプローチで使用される概念は、研究中の経路の特性を必要とする他のウイルスおよび疾患モデルに適用可能である。

Introduction

核は、ウイルス複製に必要な様々な細胞宿主およびウイルス因子の相互作用場として仮定される。核は3つの異なったコンパートメントに細分される複雑な構造である:フィブリラコンパートメント、密な線維のコンパートメントおよび粒状コンパートメント。HIV-1 Revタンパク質は、粒状コンパートメント内で特異的に局所化します。ただし、このローカリゼーション パターンの理由は不明です。NoLS配列(Rev突然変異4、5、および6)内に単一点突然変異が存在する場合、Revは核パターンを維持し、以前にHIV-1HXB2複製を救出することが示されているが、WT Rev 1と比較して効率が低下した。.すべての単一点突然変異は、HIV-1NL4-3感染サイクルを維持することができません。NoLS配列内の複数の単一点突然変異(Rev-NoLS突然変異2および9)の存在下で、Revは核および細胞質全体に分散することが観察され、HIV-1HXB2複製1を救出することができませんでした。このプロテオミクス研究の目的は、Rev媒介性HIV-1感染経路に関与するヌクレオラーおよび非ヌクレオロール細胞因子を解読することです。Rev免疫沈殿条件は、ヌクレオラーB23リンタンパク質との相互作用を通じて最適化され、以前にヌクレオラー変異の存在下でRevとの相互作用を失うことが示されている。

Rev細胞因子は、過去に広範囲に研究されています。しかし、これはウイルス病因の不在で行われている。特に、HIV-1複製中のRev相互作用を介して本研究で特徴付けられた1つのタンパク質は、両生類2、3、両生類におけるヌクレオホスミン(NPM)、ヌマトリン、またはNO38とも呼ばれるヌクレオホスミンB23である。4.B23は、3つのアイソフォーム(NPM1、NPM2、およびNPM3)として表される- 核核ホスミン/核オプラスミン核シャペロンファミリー5、6の全メンバー。NPM1分子シャペロンは、ヌクレオソームの適切な組み立てにおいて、クロマチン高次構造7、8に関与するタンパク質/核酸複合体の形成において、および凝集の防止において機能し、N末端コアドメインを介した標的タンパク質の誤折(残渣1-120)9.NPM1機能は、核と細胞質間のプリリボソーム粒子の輸送を通じてリボソーム発生にまで及び、内部転写スペーサー配列におけるプリリボソームRNAの処理12,13,リボソームアセンブリ14,15の間にタンパク質の核凝集を逮捕する.NPM1は、アポトーシス16の阻害および腫瘍抑制剤ARF 17、18およびp5319の安定化に関与し、発生因子および腫瘍抑制剤としての二重の役割を明らかにする。NPM1は、ゲノム安定性、セントロソーム複製、転写の細胞活動に関与する。NPM1は、細胞周期間相中のヌクレオリ、有人化時の染色体周辺、および有分裂の終わりに核前核体(PNB)に見出される。NPM2およびNPM3は、悪性腫瘍20の間に発現レベルの変化を受けるNPM1ほどよく研究されていない。

NPM1は、内部ファミコンおよびNLS 9、21を介した様々な核/核系タンパク質の核細胞質シャトルに記載されており、HIV-1タットおよびRevタンパク質の核輸入を促進することが以前に報告されている。B23-結合ドメイン-β-ガラクトシダーゼ融合タンパク質の存在下で、タットは細胞質内で誤局在化し、トランス活性化活性を失う。これはB232のためのタットの強い親和性を示す。別の研究は、RRE含有mRNAの不在でRev/B23安定複合体を確立した。RRE mRNAの存在下で、RevはB23から解離し、好ましくはHIV RREに結合し、B2322の変位を引き起こす。核レベルでは、HIV mRNAに対するB23のタットトランス活性化およびRev交換プロセスがどこで起こるかは不明である。両方のタンパク質は、B23相互作用を介して同時に核に入ると仮定される。HIV核経路における他の宿主細胞タンパク質の関与が期待される。このプロテオミクス調査に記載されている方法は、HIV-1病因の間に関与する宿主細胞因子との核の相互作用を解明するのに役立つ。

プロテオミクス調査は、HIV-1HXB2産生に対するRev NoLS単点変異(M4、M5、およびM6)および複数のアルギニン置換(M2およびM9)の発現を通じて開始された。このモデルでは、Rev欠損HIV-1HXB2(HLfB)を安定的に発現するHeLa細胞株を、3'末端にフラグタグを含むWT RevおよびRevヌクレオラー変異でトランスフェクトする。WT Revの存在は、Rev欠乏症(M2およびM9)を救済しないRev-NoLS変異と比較して、HLfB培養においてウイルス複製が起こることを可能にする、またはウイルス複製がWT Rev(M4、M5、およびM6)1ほど効率的に起こらないことを可能にする。細胞リサートは、Rev発現の存在下でウイルス増殖後48時間後に収集され、Rev/B23相互作用用に最適化されたリシスバッファーを用いて免疫沈殿を行った。様々な塩濃度を用いた溶解バッファー最適化について説明し、HIV-1 Revのタンパク質溶出方法を銀染色またはクマシー染色SDS-PAGEゲルで比較・分析する。最初のプロテオミクスアプローチは、タンデム質量分析による発現WT Rev、M2、M6、およびM9からの放出サンプルの直接分析を含む。WT Rev、M4、M5、およびM6の溶出をゲル抽出プロセスを受けた第2のアプローチを、第1のアプローチと比較する。WT Revと比較してRev-NoLS変異に対するペプチド親和性を分析し、タンパク質同定確率を表示する。これらのアプローチは、HIV-1 mRNA輸送およびHIV-1複製中のRevとのスプライシングに関与する潜在的な因子(ヌクレオールおよび非ヌクレオラー)を明らかにする。全体的に、記載された細胞溶解、IP、および溶出条件は、感染経路を活性化および調節する宿主細胞因子の理解のために目的とするウイルスタンパク質に適用可能である。これは、様々な疾患モデルの持続性に必要な細胞宿主因子の研究にも適用可能である。このプロテオミクスモデルでは、HIV-1 Rev IPは、核細胞質シャトル活性およびHIV-1 mRNA結合に関与するヌクレオロール因子を解明するためにB23相互作用用に最適化されています。さらに、目的の主要タンパク質に欠乏している感染症モデルを安定的に発現する細胞株は、HLfB細胞株と同様に、目的とする感染経路を研究するために開発することができる。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 細胞培養

  1. 10%の胎児ウシ血清(FBS)、2 mM L-グルタミン、および1mMのピルビン酸ナトリウムを組織培養処理100mmプレート内で補充したダルベッコの改変イーグル培地(DMEM)でHLfBを維持する。5%CO2で供給される加湿インキュベーターで37 °Cで細胞培養物を保つ。1 x 106細胞/mLの細胞密度への通過コンフルエント細胞。
  2. 細胞培養培養培養を破棄します。1xリン酸緩衝生理食べ物(PBS)の10 mLで細胞を穏やかにすすいですすいで下します。セル層を中断することなく、1x PBSを取り外して破棄します。
  3. 細胞に1xトリプシン-EDTA溶液の2 mLを追加します。単層をコーティングし、加湿室内で37°Cでインキュベートする皿を5分間ロックします。
  4. 手のひらで皿の側面をしっかりとタップし、細胞を取り外します。切り離された細胞を8mLの新鮮培養培養培養に再停止させる。細胞を400 x gで5分間回転させます。
  5. 細胞ペレットを破壊することなく培養培養培養を廃棄する。細胞ペレットを10mLの新鮮培養培養培養に再ステープルする。組織培養処理100mmプレート内の新鮮な培養培地の9 mLを用いた濃縮細胞のサブ培養1mL。
    注:Rev-NoLS変異のたびに、3x 100 mm HLfBまたはHeLa培養プレートは、ウェスタンブロット分析および質量分析に十分なタンパク質リザートを得ます。WT Rev 正のコントロールと負のコントロール用に余分なプレートを追加します。サブ培養細胞量は、異なる細胞タイプを使用して最適化を必要とします。

2. HIV-1複製中のRev-NoLS-3'フラグ変異の発現

  1. HLfB細胞培養を2 x 106細胞/mLの細胞密度に増殖させる。100mmプレート毎にリン酸カルシウム-DNA懸濁液を以下のように4mLずつ調製する。
    1. 2 本の 15 mL チューブに 1 と 2 のラベルを付けます。2x HBSの2 mL(0.05 M HEPES、0.28 M NaCl、および1.5 mM Na2HPO4 [pH 7.12])をチューブ1に追加します。TE 79/10 (1 mM トリス-HCl および 0.1 mM EDTA [pH 7.9]) をチューブ 2 に追加します。TE 79/10 の体積は 1.760 mL - DNA の体積です。
    2. チューブ2に目的のRev-NoLs-3'フラグ変異を含むプラスミドの20 μgを追加し、その内容を再懸濁液を介して混合します。チューブ2に2M CaCl2の240 μLを追加し、再び再び再び混合します。
    3. チューブ2の混合物をチューブ1滴回りに移し、穏やかに混合する。サスペンションが30分間室温で座るようにします。
  2. 3セル培養のそれぞれに1mLの懸濁液を滴下し、100mmプレートを加えながら、メディアを穏やかに旋回させる。プレートをインキュベーターに戻し、トランスフェクション混合物を6時間放置し、トランスフェクション混合物を10mLの新鮮な培養培養培養物で置き換え、細胞を42時間インキュベートする。

3. ウイルスタンパク質リサートの採取

  1. 細胞媒体48hポストトランスフェクションを廃棄する。各100mmプレートを氷のベッドの上に置きます。Rev-NoLS変異サンプルごとに15 mLチューブにラベルを付け、チューブを氷の上に置きます。
  2. 細胞層を破壊することなく、10mLの1x PBSで細胞を静かにすすいで下す。1x PBS を破棄します。3 mLのリシスバッファー(50 mMトリス-HCl[pH 8.0]、137mM NaCl、および1%X-100洗剤[材料の表を参照])を追加し、プロテアーゼ阻害剤カクテルで処理し、各100mmプレートに。
  3. セルスクレーパーを使用して、セル層を破壊します。プレートを傾け、そっとこすり、プールに細胞を集めます。1,000 μLマイクロピペットを使用して細胞リサートを収集し、あらかじめ標識された15 mLチューブ内の3つの100mmプレートのそれぞれから細胞のライサットを混合します。
  4. 氷上で細胞を15分間インキュベートし、5分ごとに15,000 x gで細胞を渦動かします。
  5. 細胞破片ペレットを破壊することなくタンパク質上清を収集し、別の無菌15 mLチューブに移します。ブラッドフォード法を用いてウイルスタンパク質リサート濃度を得る(セクション4参照)。
  6. 西洋の免疫ブロット分析のために入力サンプル(20 μg)のアリコートを保存します。2xサンプルバッファー(20%グリセロール、0.02%ブロムフェノールブルー、125mMトリス-Cl[pH 6.8]、5%SDS、および10%2-メルカプトエタノール)を最終容積に加えます。95°Cで10分間沸騰させ、-20°Cで入力サンプルを保存します。

4. ブラッドフォードアッセイ

注:タンパク質標準曲線を生成する前に、100x BSAストックから10xウシ血清アルブミン(BSA)を調調します。

  1. 以下のブランクと標準のためのマイクロ遠心管にアリコート水: ブランク = 800 μL;標準 1 = 2 mg/mL、 798 μL;標準 2 = 4 mg/mL、 796 μL;標準 3 = 6 mg/mL、 794 μL;標準 4 = 8 mg/mL、 792 μL;標準 5 = 10 mg/mL、 790 μL. アリコット 10x BSA を次の指定規格に: 標準 1 = 2 μL;標準 2 = 4 μL;標準 3 = 6 μL;標準 4 = 8 μL;標準 5 = 10 μL。
  2. 795 μLの水と5μLのタンパク質サンプルを混合して、タンパク質サンプルの混合物を調質します。各ブランク、標準、タンパク質サンプルに200 μLのタンパク質アッセイ染料試料(材料表を参照)を追加します。サンプルを均一な混合物のために短時間渦を起し、室温(18~20°C)で5分間インキュベートします。
  3. ブランク、スタンダード、タンパク質のサンプルをキュベットに転送します。595 nmのODでタンパク質濃度を測定します。

5. Rev-NoLS-3'フラグのコイノチノ沈殿

  1. M2アフィニティゲルビーズのリンス25 μL(材料表参照)を500μLのリシスバッファーで、プロテアーゼ阻害剤カクテルで処理した。すべての変異サンプルおよびコントロールに対してより多くの親和性ゲルビーズをすすいでください。
    注:2つのゲル(50μL)のための十分なM2アフィニティゲルビーズを準備する - 1つは西洋免疫ブロット分析用、もう1つはタンパク質染色および質量分析用です。
  2. 820 x gで2分間4°Cでスピンします。上清を取り除く。2倍以上のリンス。
  3. ウイルスタンパク質リザート(総体積5mLで1mg/mL)を前文M2アフィニティビーズに添加する。リシスバッファを使用して総体積を調整します。
  4. 反応を3時間インキュベートし、4°Cで回転させる。遠心分離機M2親和性ビーズ/ウイルスタンパク質は1分間820 x gでリサートする。
  5. 上清を収集し、西洋の免疫ブロット分析のためのポストIPサンプル(20 μg)のアリコートを保存します。ポストIPリサートのタンパク質濃度を測定します。西洋免疫ブロッティングのために20 μgを収集します。
  6. 最終ボリュームに 2x サンプル バッファを追加します。95°Cで10分間沸騰させ、-20°CでポストIPサンプルを保存します。
  7. 750 μLのリシスバッファーでM2ビーズをすすいで、4°Cの回転子でビーズを5分間洗い、M2ビーズを820xgで5分間洗い、上清を捨てます。
  8. 5.7の手順を繰り返し、4°Cの回転子でさらに2回の洗浄を5分間行います。3回目の洗浄後、長いゲルローディングチップを使用してM2ビーズ/co-IP複合体からリシスバッファーの痕跡を取り除きます。
    注:リシスバッファーの微量を除去する前に、ゲルローディング先端の端を平らなピンセットでつまみます。これにより、M2ビーズの破壊と取り込みが防止されます。
  9. M2ビーズを2倍のローディングバッファの55 μLで再中断します。サンプルを95°Cで10分間沸騰させます。
  10. 2つの別々のSDS-PAGEゲル(1つのゲルは西洋免疫ブロッティング用、もう1つのゲルはクーマッシー染色用)に溶出します。

6. SDS-PAGEゲルの調製

  1. 50 mLチューブに以下の試薬を混合して15%SDS-アクリルアミド溶解ゲルを2個投動(最終容積40mL、4ゲル分):4.16mL、アクリルアミド15mL:ビサクリアミド(29:1)、10mLの1.5ML(8.M.8)。、10% SDS の 400 μL、10% ペルサルフェートアンモニウムの 400 μL、および TEMED の 40 μL。
  2. 50mLチューブを数回反転して溶出ゲルを混ぜます。溶像ゲル混合物を、あらかじめ洗浄された西洋ゲル装置(4つのゲル-西洋免疫ブロッティング用3個、クーマッシー/銀染色用1個)にピペットする。
  3. ゲル混合物の最上層をカバーするのに十分な水を穏やかにピペット。溶解ゲルを重合させる。
  4. 余分な水を吸収するために、繊細なタスクワイパー(材料の表を参照)を使用して、溶解ゲルから水層を注ぎます。
  5. 50 mLチューブに以下の試薬を混合して2つの5%SDS-アクリルアミドスタッキングゲルを鋳造(最終容積20mL、4ゲル分):11.88mL、40%アクリルアミドの2.5mL:ビサクリアミド(29:1)、5.2mL(1M.8)の5.2mL、10% SDS の 200 μL、10% ペルサルフェートアンモニウムの 200 μL、および TEMED の 20 μL。
  6. 50 mLチューブを数回反転して積み重ねゲルを混ぜます。溶像ゲルの上の積み重ねゲル混合物を装置の上部にピペットする。
  7. 適切な数のレーンを含むゲルカセット櫛を積み重ねゲルに入します。繊細なタスクワイパーを使用してゲル混合物のオーバーフローを吸収します(材料の表を参照)。積み重ねゲルが完全に重合することを許可します。
  8. 1xウェスタンランニングバッファー(5x濃度:250 mMトリス-Cl[pH 8.3]、1.92 Mグリシン、0.5%SDS、および10mM EDTA)でウェスタンゲル装置をフラッディングします。
  9. 積み重ねゲルからゲルカセット櫛をそっと引っ張ります。1x西部のランニングバッファが荷重ウェルを埋めることを許可します。サンプルをロードする前に注射器を使用して、1xウェスタンランニングバッファで各ウェルをフラッシュします。
  10. ウェスタン免疫ブロットサンプルを各対応ゲル(入力サンプル、共免疫沈殿サンプル、およびポストIPサンプル)にロードします。西洋ゲルタンパク質マーカーをロードします。
  11. クーマッシー/銀染色用の共免疫沈殿サンプルを別のゲルにロードします。西洋ゲルタンパク質マーカーをロードします。
  12. ランニングゲル装置を電源に接続し、ローディング色素が溶出ゲルに達するまでゲルを100Vで動かします。荷重色素が溶出ゲルの底に達するまで電圧を140Vに上げる。

7. ウェスタンブロット転送

  1. 西洋ゲル装置を分解する。積み重ねゲルをスライスして捨て、溶解ゲルをそのまま残します。
  2. 溶解ゲルをウェスタントランスファーバッファー(25 mMトリス、194mMグリシン、0.005%SDS、20%メタノール)で満たされたきれいなトレイにそっと移し、15分間浸します。
  3. ゲル転写装置を以下のように組み立てる。
    1. PVDF転写膜3枚とフィルターペーパー6枚(材料表参照)を溶出ゲルの大きさに切ります。
    2. PVDF膜をメタノールに5分間浸し、5分間水に水を入れ、使用する準備ができるまでPVDF膜を西部転写バッファーに入れます。
    3. ゲルホルダーカセットを、西側の転送バッファーで部分的に充填されたガラスベーキングトレイに入れ、下部に黒い面を置きます。
    4. ゲルホルダーカセットの黒い側面に対して西洋の転送バッファで浸した泡パッドを置きます。
    5. 西洋の転送バッファにフィルターペーパーを濡らし、泡パッドの上に置きます。溶解ゲルをフィルターペーパーの上に置きます。
      注:PVDF膜に転送する正しいローディング方向に溶溶解ゲルを配置します。
    6. 溶解ゲルの上に1つのPVDF転写膜を置きます。西洋の転写バッファーでフィルターペーパーを濡らし、PVDF転写膜の上に置きます。
    7. フィルターペーパーの上に西洋の転送バッファを浸した別の泡パッドを置きます。ジェルホルダーカセットの白い側面を、浸した泡パッドの上に慎重に折りたたみます。カセットをしっかりとロックします。
    8. ゲルホルダーカセットを転写装置電極アセンブリに入れておきます。残りの溶解ゲルごとに手順 7.3.4-7.3.8 を繰り返します。
    9. 転送装置タンクをウェスタン転送バッファで充填します。攪拌棒を装置タンクに入れます。
    10. 装置タンクを攪拌プレートの上に置きます。攪拌の設定を5-6に調整し、攪拌バーが立ち往生したり、ゲルホルダーカセットに当たっていないことを確認します。
    11. ゲル転写装置を電源に接続し、100Vで1時間4°Cでゲルを移します。

8. 免疫ブロッティング

  1. ゲルホルダーカセットを取り外し、黒い側面をきれいなガラスベーキングトレイに当てはめます。カセットを開き、泡パッドとフィルターペーパーを慎重に捨てます。PVDF膜の角にマークを付け、正しい荷重方向を特定します。膜を濡らしておいてください。
    注:PVDF膜は空気乾燥され、きれいな密閉容器に貯えることができる。ステップ7.3.2を繰り返すことによって膜を水分補給する。
  2. 膜を100mLの遮断液(5%ミルク、1x TBS、および0.1%のツイエン20)に入れます。室温(18~20°C)で1時間の緩やかな揺れで膜を遮断します。
  3. 25 kDaタンパク質マーカーの上の膜を横切って切断します。膜の上部を、25kDaより大きいタンパク質バンドを含む、B23マウスモノクローナルIgG 1(1:500希釈)を含む遮断溶液中に配置する。一晩ブロックし、4°Cで揺れる。
  4. 膜の底部を、25kDaより小さいタンパク質バンドを含む、M2マウスモノクローナルIgG1を含む遮断溶液中に置く(1:1,000希釈、材料の表を参照)。一晩ブロックし、4°Cで揺れる。
  5. ウエスタンウォッシュ溶液(1x TBS、0.1%ツイエン20)の25mLで10分間膜3xを10分間洗浄します。
  6. ヤギの抗マウスIgG 1-HRP(1:5,000希釈)で膜を内温で1時間のブロッキング溶液で定熱します。ロッキングプラットフォーム上の西洋洗浄液の25 mLで10分間膜3xを洗浄します。
  7. 化学発光ウエスタンブロッティング基板を調作する。p1000マイクロピペットを使用して、基板を膜に追加します。
  8. 化学発光ウエスタンブロッティング基板で各膜を5分間開発し、基板から膜を取り除きます。繊細なタスクワイパーを使用して余分な基板を吸収します(材料の表を参照)。
  9. カセットの内側にテープで留めたクリーンシートプロテクターに膜を置きます。暗い部屋にカセットを取り、カセットにフィルムの1枚を置きます。カセットを所定の位置にロックし、5~15分間インキュベートします。

9. クーマッシー染色

  1. 西洋ゲル装置を分解する。積み重ねゲルをスライスして捨て、溶解ゲルをそのまま残します。溶真量ゲルを25mLの超純水で満たされたきれいなトレイにゆっくりと移します。
  2. ロッキングプラットフォーム上でゲルを15分間インキュベートし、穏やかな揺れでゲルが壊れないようにします。超純水を捨て、洗浄工程を2倍以上繰り返します。
    注:SDS気泡が洗浄工程後に残っている場合、ゲルは一晩超純水で洗浄することができます。残留SDSは、ゲルの高いバックグラウンド染色を引き起こす可能性があります。
  3. ボトルを反転してクーマッシー染色試薬を混ぜます(材料の表を参照)。100 mLのクーマッシー染色試薬を置き、溶解ゲルを覆い、1時間のロッキングプラットフォーム上でゲルをインキュベートし、クーマッシー染色試薬を捨て、15分間ロッキングプラットフォーム上の脱イオン水でゲルを洗います。
  4. 脱イオン水を捨てる。洗浄工程を2倍以上繰り返します。タンパク質バンドの所望の分解能が観察されるまでゲルを洗浄し続けます。

10. 銀染色

  1. 西洋ゲル装置を分解する。積み重ねゲルをスライスして捨て、溶解ゲルをそのまま残します。溶真量ゲルを25mLの超純水で満たされたきれいなトレイにゆっくりと移します。
  2. ロッキングプラットフォーム上でゲルを15分間インキュベートし、穏やかな揺れでゲルが壊れないようにします。超純水を捨て、洗浄工程を2倍以上繰り返します。
    注:SDS気泡が洗浄工程後に残っている場合、ゲルは一晩超純水で洗浄することができます。残留SDSは、ゲルの高いバックグラウンド染色を引き起こす可能性があります。
  3. 30%エタノール:10%酢酸溶液(6:3:1水:エタノール:酢酸)で一晩室温でゲルを固定します。10%エタノール溶液で10%のエタノール溶液で5分間室温で洗浄します。エタノール溶液を交換し、さらに5分間洗浄します。
  4. ピアスシルバーステインキットから500部の超純水(50μLの超純水で50μLの感作剤)を混合して、ピアスシルバーステインキットから感作剤加工液を調製します。感性作動液中の溶剤を1分間インキュベートし、ゲルを超純水で1分間洗浄し、水を交換し、再度1分間洗浄します。
  5. 50部の銀染色(25mLの銀染色でエンハンサーの500 μL)と一部の銀染色エンハンサーを混合して汚れ作業液を調製します。染色作業液中のゲルを30分間インキュベートします。
  6. 1部銀染色エンハンサーと50部銀染色開発者(25mLの開発者を含むエンハンサーの500 μL)を混合して、開発者の作業ソリューションを準備します。停止溶液として5%酢酸溶液を調出す。ゲルを超純水で1分間洗い、水を交換し、さらに1分間ゲルを洗います。
  7. 水を開発者の作業溶液に置き換え、所望のタンパク質バンド強度が解決されるまでインキュベートします(5分)。開発者の作業ソリューションをストップソリューションに置き換え、10分間インキュベートします。

11. インゲル還元、アルキル化、クマシー染色ゲルバンドの消化

  1. きれいなかみそり刃を使用してゲルバンドをカットします。各ゲルバンドを約5mmの立方体に切り、きれいな0.5 mLマイクロ遠心管に入れます。
  2. ゲル片を1:1アセトニトリルで100mMの重炭酸アンモニウムで覆って汚し、室温で15分間水を下します。この手順を繰り返します。
  3. ゲル片を真空遠心分離機で5分間乾燥させます。乾燥したゲル片を10mMのジチオスレイトールで10mMの重炭酸アンモニウムで覆い、56°Cで1時間インキュベートしてタンパク質を減らします。
  4. 上清を切り落とすピペット。100mMのヨウドアセタミドでゲル片を水で覆い、暗闇の中で室温で1時間インキュベートしてタンパク質をアルキル化します。
  5. 上清を取り除き、アセトニトリルで覆い、室温で15分間ゆっくりと振ってゲル片を細かくし、重炭酸アンモニウムで覆って振ることでゲル片を再膨大にする。室温で15分間ゆっくりとお待ちください。
  6. 手順 11.5 を繰り返します。ゲル片を真空遠心分離機で5分間乾燥させます。
  7. ゲル片を50ng/μLシーケンシンググレードで覆い、重炭酸アンモニウム100mでリプシン(材料の表を参照)を変更します。ゲルが5分間膨るのを許可します。その後、残りの溶液をピペットオフします。ゲル片を100mMの重炭酸アンモニウムで覆い、完全に再膨大にし、ゲル片が完全に覆われているように100mMの重炭酸アンモニウムを追加します。
  8. ゲル片を37°Cで一晩インキュベートします。水に10%ギ酸の体積の1/10を加えて反応を停止します。各チューブから上清を収集します。
  9. 60%のアセトニトリルで1%のギ酸で覆い、穏やかな振りで15分間インキュベートすることによってゲル片を抽出します。
  10. 真空遠心分離機で結合した上清の体積を20μL未満に減らし、上清を完全に乾燥させないように注意してください。1%のギ酸を加えて総体積を20μLに戻します。

12. 液体クロマトグラフィー/質量分析

注:サンプルは、超HPLC、ナノスプレー源、およびカラムを備えた質量分析計を用いて分析した(材料の表を参照)。溶媒AとBは、それぞれ水中のギ酸とアセトニトリルで0.1%である。

  1. 消化されたタンパク質を高回収ポリプロピレンオートサンプラーバイアルにロードします。バイアルをUPLCシステムのサンプルマネージャにロードします。
  2. 各サンプルに6 μLを注入します。各サンプルをナノタイルのトラッピングカラムに8 μL/minで1.5分間ロードし、99%溶媒A/1%溶媒Bを使用します。
  3. ペプチドを30分間にわたって溶媒Bの3%から35%の線形勾配で質量分析計に溶出し、次いで溶媒Bの35%から50%、溶媒Bの50%から90%を1分間にわたって3分間維持する。次に、%B を 5 分以上で 3% に戻します。
  4. 正イオンプロファイル質量スペックデータを解像度(20,000解像度)モードで取得します。0.6秒ごとに1回のスキャンの割合で100~2,000 Daのデータを取得し、衝突エネルギーのないスキャンと高い衝突エネルギーでスキャンすることで、MSEモードでデータを取得します。
  5. 上昇した衝突エネルギーの場合、Trapセル内の衝突エネルギーを15Vから40Vにランプし、ロック質量として[Glu 1]-フィブリノペプチドBの+2イオンを使用して、30秒ごとにロックマススキャンを取得します。溶媒Aのブランク注入を用いてデータファイルを取得し、各サンプルのペア間で同じ取得方法を使用して持ち越しを制御する。

13. 質量分析のためのデータ分析

  1. 質量分析結果ファイルを、定量的および定性的なプロテオミクス研究プラットフォーム(ProteinLynxグローバルサーバ)を実行しているコンピュータにコピーします。データ分析は CPU を集中的に使用するため、別の高性能データ分析コンピュータで実行する必要があります。
  2. データの新しいプロジェクトを作成します。オートサンプラープレートを表す新しいマイクロティタープレートを作成します。サンプルをマイクロティタープレート内の同じ位置にオートサンプラー内の位置に割り当てます。
  3. 各サンプル処理パラメータを割り当てます。使用するパラメータは、自動クロマトグラフィーピーク幅とMSTOF解像度です。低エネルギー閾値、100カウント。上昇したエネルギー閾値、5カウント;強度しきい値、500 カウント。
  4. 各サンプル ワークフロー パラメータを割り当てます。使用するパラメータは、データベース、連結人間のSwissProtとHIV、逆のシーケンスです。自動ペプチドおよびフラグメント耐性;分フラグメントイオンはペプチド当たり一致します, 3;分断片イオンはタンパク質当たり一致します, 7;分ペプチドはタンパク質当たり一致します, 1;一次消化薬, トリプシン;欠落した切断, 1;固定修飾剤試薬、カルバミドメチルC;可変修飾剤試薬、酸化M;偽の発見率、100。
  5. サンプルを選択し、[最新の生データを処理]を選択します。検索が完了したら、サンプルを選択し、[データをスキャフォールドにエクスポート]を選択します (バージョン 3)。スキャフォールドを開き、新しいファイルを作成し、前駆体イオン定量を使用して新しいバイオサンプルとしてプロテオミクスプラットフォームからエクスポートされた各ファイルをインポートします。
  6. すべてのファイルがインポートされた場合は、[データの読み込みと分析]画面に進みます。LFDR スコアリングと標準的な実験全体のタンパク質グループ化を使用して、検索データとインポートデータに使用するのと同じデータベースを選択します。表示オプションをタンパク質同定確率、タンパク質閾値を20%、ペプチドの最小数を1に、ペプチド閾値を分析中に0%に設定します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

様々な細胞下局在パターンに対応するRev-NoLSの単一および多点アルギニン変異は、WT Rev.WT Rev-3'フラグおよびp cDNA-flagと比較して細胞宿主因子と相互作用する能力において検討された。ベクターはHLfB培養において発現した。タンパク質複合体を全細胞リサートから処理し、銀染色試薬で染色した。Rev-NoLS-3'フラグは、図1のNaCl(137 mM、200mM、および300mM)の様々な濃度を含む3つの異なるライシスバッファー条件で検出可能(約18 kDa)である。B23は、低塩濃度(137mM、レーン2~4)を含むリシスバッファー中で検出可能(37kDa)、200mM NaClを含むリシスバッファーでほとんど検出できず、高塩濃度(300mM NaCl)を含むリシスバッファーでは検出不能であった。図2では、WT Rev-3'フラグ、Rev-NoLS M1-3'フラグ、およびpcDNA-フラグベクターがHLfB培養で発現した。タンパク質錯誤は、2つのリシスバッファー条件(137mMおよび200mM NaCl)から調製した全細胞座から処理した。M2マウスモノクローナルIgG1は、細胞リサテからのRev-3'フラグ発現の検出に用いられた。B23検出は、WT Rev-3'フラグ(入力およびαフラグ-Rev-Rev IP)を持つ137 mM NaClを含むリシスバッファで最適でしたが、Rev-NoLS M1-3'フラグとの親和性が失われました。WT Rev-3'フラグとのB23親和性は、200mM NaClを含むリシスバッファー中の塩濃度が高いほど減少した。pcDNA陰性対照は、すべてのリシスバッファー条件の入力およびα-flag-Rev IPにおける非特異的免疫検出を得られなかった。

溶出条件は、図 3の Rev-NoLS-3'フラグ IP 用に最適化されました。WT Rev-3'フラグおよびpcDNA-フラグベクターは、HLfB培養において発現した。タンパク質複合体は、全細胞凝結物から処理され、光と重鎖の背景(25および50 kDa)を根絶するために3つの異なる条件を使用して、3つの異なる条件を使用して、15分間37°Cの2xサンプルローディングバッファ、95°Cでの2xサンプルロードバッファを3分間、3倍フラグペプチドで照水した。eは30分間4°CでRev-3'フラグ(〜18 kDa)は、2倍のサンプル負荷バッファーで沸騰を通じて溶出した後に最も検出可能であった。B23(~37 kDa)は、2つの条件下で検出可能であった - 3分間の2xサンプルローディングバッファで37°Cインキュベーション、2xサンプル読み込みバッファーで95°Cインキュベーションを3分間行った。

M2(局在化における核/核核、HIV-1HXB2産生における非機能)、M6(パターン中の核胞、HIV-1HXB2産生における機能性)、およびM9(細胞質/核に分散し、ウイルス産生における非機能的)HLfB文化で表現されます。タンパク質錯誤物を全細胞液質から処理し、2xサンプル負荷バッファーで95°Cインキュベーションを通して3分間再生し、銀染色試薬で分解した(図4)。WT Revは、IPフラグ反応後に検出可能であった。Rev-NoLS M2、M6、およびM9も18 kDaで検出可能であった。B23タンパク質に対応するバンドは37kDaマーカーで観察された。タンパク質複合体は、WT Rev、M2、M6、M9、およびpcDNA陰性制御のIP反応に対応する各レーンでさらに観察された。タンパク質のライサットは、αフラグRevおよびB23に対する免疫検出により分析した。豊富なWT Revおよび適度なレベルのM6を表し(αフラグ入力)、フラグIP後に検出可能(α-flag-Rev IP、図5)。M2およびM9は、20μgのタンパク質リサート入力から高度に発現しなかったが、5mgのタンパク質リサートからフラグIP後の低強度で検出可能であった。pcDNA陰性対照は、入力およびαフラグ-Rev IPにおける非特異的免疫検出を生じなかった。WT RevとのB23親和性は、IPフラグ反応後に観察された(B23共IP)。B23親和性は、M2(2つの単一点突然変異R48,50G)およびM6(単一点突然変異R50G)でわずかに観察された。B23アフィニティは、Rev-NoLS内のM9(R46,48,50G)の3つの単一点変異の存在下で失われました。

免疫沈殿WT RevおよびRev-NoLS-3'フラグ変異(4、5、6、および8)からの総リサテを処理し、クマシー試薬で染色し、BSAシリアル希釈(右パネル)と比較して可視化した。Rev-NoLS-3'フラグは、18 kDa(図6)で変異の有無において検出可能(12.5〜25 μg)である。WT Rev-3'フラグのIP反応から処理されたタンパク質複合体、ヌクレオラー局所型Rev-NoLS-3'フラグ変異(M4、M5、およびM6)、および陰性対照p cDNA-flagを、クマシー試薬で染色したSDS-PAGEゲルで可視化した(図7)。WT Rev(WT1およびWT2)は、18kDaでのIPフラグ反応後に検出可能であった。Rev-NoLS変異は、HLfBおよびIPフラグ反応における発現後にわずかに検出可能であった。pcDNA陰性対照は18kDaで非特異的背景を得られなかった。

WT Rev-3'フラグから調製した免疫沈殿リゼ分化は、M2、M6、M9、および陰性対照p cDNA-flag(図4に示す)をタンデム質量分析により分析した。タンパク質同定確率(パーセンテージ)は、各ヌクレオラー局所的Rev-NoLS変異とWT Rev(表1)で起こるタンパク質相互作用の比較のために表示される。細胞タンパク質は、ローカリゼーションパターンにおけるヌクレオラー(リボソームイソフォーム、真核翻訳開始因子48、snoRNA C/Dボックス58B、およびヌクレオフォスミンB23)であり、WT Rev.これらのヌクレオラールの直接的/間接的結合パートナーとして同定された。要因は、M2(2つの単一点突然変異R48,50G)、M6(単一点突然変異R50G)、およびM9(3つの単一点突然変異R46,48,50G)に対する結合親和性を失い、pcDNA陰性対照と同様である。図6のクマシー染色ゲルの各レーンは、アンデム質量分析のために処理された(表2)。Rev-NoLS変異に対するペプチド親和性を分析し、タンパク質同定確率(パーセンテージ)を用いて表示した。ローカリゼーションパターンにおけるヌクレオラー(核オリンC23、ヌクレオフォスミンB23、およびヌクレオソーム組立タンパク質)の一部である様々な細胞タンパク質は、WT Revの直接的/間接的タンパク質結合因子として同定された。M4、M5、および M6 でバインドするように識別されます。輸送因子ARHGEF1(rhoグアニンヌクレオチド交換因子1)およびTBC1D24(TCB1ドメインファミリー、メンバー24)は、Rev-NoLS変異の存在下で親和性が失われた。スプライシング因子hnRNPC(異種リボ核タンパク質C)およびPNN(ピニン、脱化症関連タンパク質)は、Rev単点ヌクレオラー変異との相互作用を失ったWT Revに結合するためにさらに観察された。

Figure 1
図 1: HIV-1産生中のRev-3'フラグ共IPに対する細胞リシス条件の最適化WT Rev-NoLS-3'フラグおよび陰性制御pcDNA-フラグIP条件は、リシスバッファー内の3つの異なるNaCl濃度(137 mM、200 mM、および300mM)で最適化されました。銀染色を通じて観察されたように、137 mM NaClはRev免疫沈殿およびB23結合に最適な塩濃度であった。この図のより大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図 2: HIV-1産生中のRev-3'フラグ共IPおよびB23免疫検出に対するリシス条件の最適化WT Rev-NoLS-3'フラグ、M1-3'フラグ、および負の対照p cDNA-flag IP条件は、リシスバッファー内の2つの異なるNaCl濃度(137 mMおよび200mM)で最適化されました。免疫検出を通じて観察されたように、137 mM NaClはRev免疫沈殿およびB23結合に最適な塩濃度であった。この図のより大きなバージョンを表示するには、ここをクリックしてください。

Figure 3
図 3:HIV-1産生時のRev-3'フラグ共IP溶出の最適化、銀染色により可視化。タンパク質複合体は、WT Rev-3'フラグおよびpcDNA-フラグIP中に調製した全細胞凝算物から処理した。3つの異なる溶出条件を試験した - 37°Cでの2xサンプルローディングバッファーを15分間、95°Cで2xサンプルローディングバッファを3分間、30分間4°Cで3倍フラグペプチドを試験した。WT Revの最適な溶出条件は、37°Cの2xサンプル読み込みバッファーで15分インキュベーション期間後、および95°Cの2xサンプル読み込みバッファーで3分インキュベーション期間後に発生した。この図のより大きなバージョンを表示するには、ここをクリックしてください。

Figure 4
図 4: HIV-1産生中のRev-3'フラグ変異2、6、および9の免疫沈殿。WT Rev、M2(R48,50G)、M6(R50G)、M9(R46,48,50G)、およびHIV-1複製の存在下で陰性コントロールpcDNA-フラグと直接的/間接的に結合したタンパク質複合体は、銀染色されたSDS-PAGEゲルに示されています。この図のより大きなバージョンを表示するには、ここをクリックしてください。

Figure 5
図 5:HIV-1産生中のB23免疫検出に対する変異2、6、および9のRev-3'フラグ共IP。WT Rev、M2、M6、M9、および陰性対照pcDNA-flagから調製したタンパク質は、αフラグRevおよびB23に対する免疫検出によりさらに分析した。 WT Revおよび変異発現は、B23ヌクレオ細胞質タンパク質との相互作用と同様に、観察される。この図のより大きなバージョンを表示するには、ここをクリックしてください。

Figure 6
図 6: フラグIP反応後のRev-NoLS変異4、5、6、および8の定量化. WT Revおよびヌクレオラー局所化M4(R46G)、M5(R48G)、M6(R50G)、M8(ΔRQ)、および陰性対照pcDNA-flagを発現するHLfBからのIP反応は、BSAシリアル希釈を用いてタンパク質濃度について測定した。各サンプルについて12.5~25μgのタンパク質濃度が観察された。この図のより大きなバージョンを表示するには、ここをクリックしてください。

Figure 7
図 7: HIV-1産生中のヌクレオラー局所的Rev-NoLS変異4、5、および6の免疫沈殿。WT Rev(1および2)、M4、M5、およびM6の免疫沈殿タンパク質複合体を含むクマシー染色SDS-PAGEゲルが示されている。この図のより大きなバージョンを表示するには、ここをクリックしてください。

同定されたタンパク質 分子量 WT レブ M2 M6 M9
信号認識粒子14kDa(相同アルRNA結合タンパク質) 15 kDa 95パーセント 0 0 0
リボソームタンパク質 S3A 30 kDa 95パーセント 0 0 0
真核翻訳開始係数4B 69 kDa 95パーセント 0 0 0
リボソームタンパク質 L31 14 kDa 91パーセント 0 0 0
リボソームタンパク質 L12 18 kDa 93パーセント 0 0 0
リボソームタンパク質 L22 15 kDa 91パーセント 0 0 0
小型核酸RNA、C/Dボックス 58B 15 kDa 87パーセント 0 0 0
亜鉛フィンガー、11を含むCCHCドメイン 185 kDa 87パーセント 0 0 0
アクチン結合LIMタンパク質 1 79 kDa 79パーセント 0 0 0
リボソームタンパク質 S13 17 kDa 78パーセント 0 0 0
ヌクレオホスミン(ヌクレオラーホスプロテインB23、ヌマトリン) 33 kDa 73パーセント 0 0 0

表1:HIV-1産生中にWT Revと相互作用する細胞宿主因子の同定WT Rev、M2、M6、およびM9から調製したタンパク質溶出タンパク質を、タンデム質量分析により直接分析した。WT Rev 対 M2、M6、および M9 に直接的/間接的に結合されるタンパク質相互作用は、タンパク質同定確率 (パーセンテージ) によって要約されます。

同定されたタンパク質 分子量 M4 M5 M6 重量 pCDNA
ポリ(A)結合タンパク質、細胞質1 61 kDa 98パーセント 0 100パーセント 100パーセント 0
ヒートショック 70kDa タンパク質 1B 70 kDa 100パーセント 100パーセント 100パーセント 100パーセント 0
リボソームタンパク質 L7 29 kDa 91パーセント 0 100パーセント 100パーセント 0
ヒストンクラスター1、H1e 22 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 L4 48 kDa 95パーセント 0 100パーセント 100パーセント 0
リボソームタンパク質 L13 24 kDa 99パーセント 0 100パーセント 100パーセント 0
補体成分1、qサブ成分結合タンパク質 31 kDa 100パーセント 100パーセント 100パーセント 100パーセント 0
Yボックス結合タンパク質 1 36 kDa 0 0 100パーセント 100パーセント 0
ヌクレオソーム組立タンパク質1様1 45 kDa 0 0 0 100パーセント 0
リボソームタンパク質 L8 28 kDa 89パーセント 36パーセント 100パーセント 100パーセント 0
リボソームタンパク質 L18 22 kDa 27パーセント 0 100パーセント 100パーセント 0
ヒートショック 70kDa タンパク質 8 71 kDa 5パーセント 99パーセント 100パーセント 100パーセント 0
リボソームタンパク質 L19 23 kDa 10パーセント 0 81パーセント 100パーセント 0
リボソームタンパク質 L27 16 kDa 92パーセント 0 100パーセント 100パーセント 0
リボソームタンパク質 L7a 30 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 L24 18 kDa 0 0 100パーセント 99パーセント 0
チューブリン,ベータクラスI 50 kDa 92パーセント 69パーセント 100パーセント 100パーセント 0
リボソームタンパク質 L6 33 kDa 0 0 100パーセント 100パーセント 0
ヒートショック 70kDa タンパク質 9 (死化) 74 kDa 33パーセント 99パーセント 100パーセント 100パーセント 0
リボソームタンパク質 S2 31 kDa 87パーセント 0 100パーセント 100パーセント 0
カゼインキナーゼ2、α1ポリペプチド 45 kDa 0 0 50パーセント 100パーセント 0
リボソームタンパク質 L14 23 kDa 0 0 81パーセント 100パーセント 0
リボソームタンパク質, 大, P0 34 kDa 0 0 100パーセント 100パーセント 0
ヒストンクラスター1、H1b 23 kDa 0 0 73パーセント 100パーセント 0
ヒートショック70kDaタンパク質5(グルコース調節タンパク質) 72 kDa 99パーセント 0 100パーセント 100パーセント 0
リボソームタンパク質 S4, X結合 30 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 S20 13 kDa 98パーセント 94パーセント 99パーセント 99パーセント 0
リボソームタンパク質 L28 16 kDa 0 0 100パーセント 99パーセント 0
リボソームタンパク質 S14 16 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 S3A 30 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 L21 19 kDa 0 0 100パーセント 100パーセント 0
亜鉛フィンガーCCCH型、抗ウイルス1 101 kDa 0 0 97パーセント 100パーセント 0
ヒストンクラスター1、H1c 21 kDa 0 0 0 98パーセント 0
リボソームタンパク質 L36 12 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 S18 18 kDa 90パーセント 0 100パーセント 100パーセント 0
アポトーシス1のモジュレーター 40 kDa 42パーセント 88パーセント 34パーセント 0 0
リボソームタンパク質 L17 21 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 S26 13 kDa 91パーセント 0 99パーセント 98パーセント 0
リボソームタンパク質 L32 18 kDa 0 0 48パーセント 100パーセント 0
リボソームタンパク質 L35 15 kDa 0 0 97パーセント 100パーセント 0
リボソームタンパク質 L29 18 kDa 0 0 57パーセント 94パーセント 0
リボソームタンパク質 S9 23 kDa 0 0 100パーセント 100パーセント 0
異種核リボヌクレオタンパク質H1(H) 51 kDa 98パーセント 0 100パーセント 100パーセント 0
リボソームタンパク質 S8 22 kDa 0 0 78パーセント 100パーセント 0
リボソームタンパク質 L10 25 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 L23a 18 kDa 0 0 68パーセント 100パーセント 0
リボソームタンパク質 S6 29 kDa 0 0 100パーセント 100パーセント 0
リボソームタンパク質 L31 14 kDa 0 0 95パーセント 100パーセント 0
リボソームタンパク質 S13 17 kDa 0 0 100パーセント 99パーセント 0
リボソームタンパク質 L10a 25 kDa 45パーセント 0 81パーセント 100パーセント 0
ポリ(A)結合タンパク質、細胞質4(誘導形態) 70 kDa 0 0 100パーセント 100パーセント 0
1を含む膜emp24タンパク質輸送ドメイン 25 kDa 0 0 0 100パーセント 0
EBNA1結合タンパク質 2 35 kDa 0 0 69パーセント 100パーセント 0
保存されたらせんループ-らせんユビキタスキナーゼ 85 kDa 74パーセント 92パーセント 65パーセント 83パーセント 0
リボソームタンパク質 L12 18 kDa 0 0 57パーセント 100パーセント 0
リボソームタンパク質 S24 15 kDa 0 0 100パーセント 100パーセント 0
コールドショックドメインタンパク質A 40 kDa 0 0 0 100パーセント 0
リボソームタンパク質 L27a 17 kDa 0 0 89パーセント 99パーセント 0
異種核リボヌクレオタンパク質F 46 kDa 0 0 99パーセント 99パーセント 0
リボソームタンパク質 L11 20 kDa 0 0 99パーセント 100パーセント 0
リボソームタンパク質 L26様 1 17 kDa 0 0 100パーセント 100パーセント 0
カゼインキナーゼ2、α素分ポリペプチド 41 kDa 0 0 0 100パーセント 0
チューブリン、アルファ1a 50 kDa 33パーセント 0 100パーセント 0 0
リボソームタンパク質 L3 46 kDa 0 0 86パーセント 94パーセント 0
ミトコンドリアリボソームタンパク質 L15 33 kDa 0 0 100パーセント 99パーセント 0
ヌクレオリン 77 kDa 0 0 25パーセント 100パーセント 0
ミトコンドリアリボソームタンパク質 S21 11 kDa 0 0 93パーセント 94パーセント 0
KRR1、小型サブユニット(SSU)プロセスオメ成分、ホモログ(酵母) 44 kDa 89パーセント 0 76パーセント 99パーセント 0
ミトコンドリアリボソームタンパク質 S7 28 kDa 0 0 0 100パーセント 0
塩化物チャネル, ヌクレオチド感受性, 1A 22 kDa 0 0 97パーセント 86パーセント 0
サイクリン B3 158 kDa 0 0 67パーセント 49パーセント 0
グアニンヌクレオチド結合タンパク質様3(ヌクレオラー) 61 kDa 0 0 99パーセント 98パーセント 0
ミトコンドリアリボソームタンパク質 S23 22 kDa 0 0 100パーセント 50パーセント 0
ミトコンドリアリボソームタンパク質 S22 41 kDa 0 0 0 99パーセント 0
ヌクレオホスミン(ヌクレオラーホスプロテインB23、ヌマトリン) 33 kDa 0 0 52パーセント 97パーセント 0
リボソームタンパク質 S19 16 kDa 0 0 0 99パーセント 0
グリセラルデヒド-3-リン酸脱水素酵素 36 kDa 0 0 100パーセント 0 0
ヒストンクラスター1、H2bg 14 kDa 0 0 53パーセント 72パーセント 0
リボソームタンパク質 S23 16 kDa 0 0 68パーセント 0 0
ローグアニンヌクレオチド交換因子(GEF) 1 104 kDa 0 0 0 94パーセント 0
死関連タンパク質 3 46 kDa 0 0 87パーセント 87パーセント 0
ミトコンドリアリボソームタンパク質 S6 14 kDa 0 0 52パーセント 84パーセント 0
リボソームタンパク質 L39 6 kDa 0 0 0 87パーセント 0
ミトコンドリアリボソームタンパク質 S28 21 kDa 0 0 85パーセント 99パーセント 0
ヒストンクラスター1、H4h 11 kDa 0 0 0 93パーセント 0
ミトコンドリアリボソームタンパク質 L43 23 kDa 0 0 0 97パーセント 0
リボソームタンパク質 S15 17 kDa 0 0 0 85パーセント 0
リボソームタンパク質 S12 15 kDa 0 0 68パーセント 39パーセント 0
リボソームタンパク質 L35a 13 kDa 0 0 0 96パーセント 0
ミトコンドリアリボソームタンパク質 L38 45 kDa 0 0 42パーセント 98パーセント 0
ミトコンドリアリボソームタンパク質 S14 15 kDa 0 0 45パーセント 76パーセント 0
ホスホジエステラーゼ 5A, cGMP 特異的 95 kDa 14パーセント 0 0 72パーセント 0
リボソームタンパク質 L15 24 kDa 0 0 0 56パーセント 0
異種核リボヌクレオタンパク質C(C1/C2) 22 kDa 0 0 0 100パーセント 0
ミトコンドリアリボソームタンパク質 S16 11 kDa 0 0 0 92パーセント 0
リボソームタンパク質 S15a 15 kDa 0 0 0 91パーセント 0
ノイレキシン 2 185 kDa 0 50パーセント 0 0 0
自閉症感受性候補2 139 kDa 0 0 46パーセント 0 0
ミトコンドリアリボソームタンパク質 L17 20 kDa 0 0 0 92パーセント 0
スプライシング係数 3a、サブユニット 1、120kDa 89 kDa 0 0 56パーセント 89パーセント 0
ラ・リボヌクレオタンパク質ドメインファミリー、メンバー1 116 kDa 0 0 65パーセント 66パーセント 0
レプレカン様 2 62 kDa 0 0 0 68パーセント 0
リボソームタンパク質 L18a 21 kDa 0 0 0 86パーセント 0
リボソームタンパク質 L23 15 kDa 0 0 60パーセント 47パーセント 0
9を含む膜emp24タンパク質輸送ドメイン 27 kDa 0 0 0 78パーセント 0
信号認識粒子 72kDa 75 kDa 0 0 0 100パーセント 0
レクチン, ガラクトーシド結合, 可溶性, 3 26 kDa 0 71パーセント 28パーセント 0 0
ミトコンドリアリボソームタンパク質L1 37 kDa 0 0 0 69パーセント 0
H1ヒストンファミリー、メンバーX 22 kDa 0 0 0 96パーセント 0
カゼインキナーゼ2、βポリペプチド 25 kDa 0 0 0 89パーセント 0
溶質担体ファミリー4、重炭酸ナトリウム共輸送器、部材7 118 kDa 82パーセント 0 0 0 0
WD リピート ドメイン 13 54 kDa 0 81パーセント 0 0 0
転写伸長係数A(SII)、3 17 kDa 0 0 0 38パーセント 0
リボソームタンパク質 S16 16 kDa 0 0 75パーセント 0 0
SP140核体タンパク質 92 kDa 0 0 0 64パーセント 0
オトフェリン 227 kDa 62パーセント 0 0 0 0
ゴルジ輸送1B 15 kDa 0 0 0 33パーセント 0
ミトコンドリアリボソームタンパク質 S34 26 kDa 0 0 0 33パーセント 0
リボソームタンパク質 L30 13 kDa 0 0 0 49パーセント 0
アクチン結合LIMタンパク質 1 96 kDa 0 0 0 43パーセント 0
グアニンヌクレオチド結合タンパク質様2(ヌクレオラー) 84 kDa 40パーセント 0 0 0 0
高密度リポタンパク質結合タンパク質 141 kDa 0 0 34パーセント 0 0
アデノシン デアミナーゼ, RNA 特異的, B2 81 kDa 0 0 28パーセント 0 0
シスタチン E/M 17 kDa 0 27パーセント 0 0 0
亜鉛フィンガータンパク質 786 80 kDa 0 0 23パーセント 0 0
プレクストリン相同様ドメイン、ファミリーB、メンバー1 145 kDa 0 0 0 95パーセント 0
プロテインホスファターゼメチルレステネーゼ1 44 kDa 0 0 94パーセント 0 0
ヤヌスキナーゼと微小管相互作用タンパク質2 95 kDa 0 0 0 94パーセント 0
信号認識粒子 68kDa 67 kDa 0 0 0 93パーセント 0
TBC1 ドメイン ファミリ、メンバー 24 63 kDa 0 0 0 89パーセント 0
ミトコンドリアリボソームタンパク質 L27 16 kDa 0 0 0 89パーセント 0
ミトコンドリアリボソームタンパク質L2 24 kDa 0 0 0 88パーセント 0
ミトコンドリアリボソームタンパク質 S2 33 kDa 0 0 0 87パーセント 0
ペンタトリコペプチド反復ドメイン 3 79 kDa 0 0 0 84パーセント 0
リボソームタンパク質, 大, P2 12 kDa 0 0 0 76パーセント 0
IMP(イノシン5'-一リン酸)デヒドロゲナーゼ2 56 kDa 0 0 76パーセント 0 0
チューブリン,ベータ4BクラスIVb 50 kDa 0 0 76パーセント 0 0
ミトコンドリアリボソームタンパク質 L23 19 kDa 0 0 0 74パーセント 0
ミトコンドリアリボソームタンパク質 S31 45 kDa 0 0 0 74パーセント 0
ガラクトース-3-O-スルフォトランスフェラーゼ 1 49 kDa 74パーセント 0 0 0 0
変化のサプレッサー 4-20 ホモログ1 (ショウジョウバエ) 99 kDa 0 72パーセント 0 0 0
ミトコンドリアリボソームタンパク質 S25 20 kDa 0 0 0 70パーセント 0
1を含むリボソームL1ドメイン 55 kDa 0 0 0 70パーセント 0
シーケンス類似性110、メンバーDを持つファミリ 29 kDa 69パーセント 0 0 0 0
リボソームタンパク質 L36a 様 12 kDa 0 0 0 66パーセント 0
小脳4前駆体 22 kDa 0 0 0 64パーセント 0
N-アセチルグルコサミン-1-リン酸トランスフェラーゼ、アルファおよびベータサブユニット 144 kDa 64パーセント 0 0 0 0
RAD51 ホモログB (S. セレビシエ) 38 kDa 0 0 0 64パーセント 0
転写伸長レギュレータ 1 124 kDa 63パーセント 0 0 0 0
ホホームボックス A1 15 kDa 0 0 0 62パーセント 0
リン脂質転写タンパク質 49 kDa 0 0 0 62パーセント 0
Rho GTPase活性化タンパク質 33 137 kDa 0 0 54パーセント 0 0
ミトコンドリアリボソームタンパク質 S18B 29 kDa 0 0 0 52パーセント 0
小腸内網膜アミノペプチダーゼ 2 106 kDa 51パーセント 0 0 0 0
28を含む三部作のモチーフ 89 kDa 0 50パーセント 0 0 0
未熟な結腸癌転写物 1 24 kDa 0 0 0 50パーセント 0
AT リッチ インタラクティブ ドメイン 1A (SWI のような) 242 kDa 0 0 49パーセント 0 0
ミトコンドリアリボソームタンパク質 S17 15 kDa 0 0 0 48パーセント 0
ピニン, デスモソーム関連タンパク質 82 kDa 0 0 0 48パーセント 0
タンパク質ホスファターゼ, Mg2+/Mn2+ 依存, 1G 59 kDa 0 0 0 45パーセント 0
Gパッチドメインとアンキリン繰り返し1 39 kDa 45パーセント 0 0 0 0
ミトコンドリアリボソームタンパク質 L3 39 kDa 0 0 0 44パーセント 0
ベンジミダゾール3ホモログ(酵母)によって抑制されない芽 37 kDa 0 44パーセント 0 0 0
WDとテトラトリコペプチド繰り返し 1 76 kDa 0 0 0 44パーセント 0
タンパク質ジスルフィドイソムラーゼファミリーA、メンバー2 58 kDa 0 0 0 42パーセント 0
カズリン、ペリプラキン相互作用タンパク質 86 kDa 0 41パーセント 0 0 0
コイルコイル-らせんコイルコイルらせんドメイン(2を含む) 16 kDa 0 0 40パーセント 0 0
ヒートショックタンパク質 90kDa α(サイトソリック)、クラスA部1 85 kDa 0 0 40パーセント 0 0
網膜色素変性症GTPaseレギュレータ 83 kDa 0 0 40パーセント 0 0
CTD(カルボキシ末端ドメイン、RNAポリメラーゼII、ポリペプチドA)
ホスファターゼ、サブユニット1
104 kDa 0 39パーセント 0 0 0
ミトコンドリアリボソームタンパク質 L37 48 kDa 0 0 0 39パーセント 0
C2CD2様 76 kDa 0 38パーセント 0 0 0
DNAJ (Hsp40) ホモログ, サブファミリー C, メンバー 6 106 kDa 0 0 38パーセント 0 0
ミトコンドリアリボソームタンパク質 L51 15 kDa 0 0 0 38パーセント 0
バイスティンのような 50 kDa 0 0 0 38パーセント 0
ハンチンチン関連タンパク質 1 76 kDa 0 0 0 37パーセント 0
亜鉛フィンガータンパク質 263 77 kDa 0 36パーセント 0 0 0
細胞分裂サイクルとアポトーシスレギュレータ1 133 kDa 0 0 34パーセント 0 0
タンパク質チロシンホスファターゼ、非受容体型13型
(APO-1/CD95(ファス)関連ホスファターゼ)
256 kDa 0 0 34パーセント 0 0
2 を含む KRAB-A ドメイン 56 kDa 0 0 0 31パーセント 0
信号共生装置1複合サブユニット2の活性化 28 kDa 0 0 0 31パーセント 0
セントロソマルタンパク質 76kDa 74 kDa 0 30パーセント 0 0 0
ポリメラーゼ(RNA) III (DNA指向) ポリペプチド C (62kD) 61 kDa 0 0 0 30パーセント 0
5-ヒドロキシトリプタミン(セロトニン)受容体 6 47 kDa 0 0 0 29パーセント 0
T細胞受容体α結合 56 2 kDa 0 26パーセント 0 0 0
細胞分裂1様の染色体の二方向 330 kDa 0 0 0 25パーセント 0
Ras アソシエーションと DIL ドメイン 114 kDa 0 0 25パーセント 0 0
WD リピート ドメイン 66 130 kDa 0 0 0 24パーセント 0
染色体 6 オープンリーディングフレーム 25 13 kDa 0 0 22パーセント 0 0
膜タンパク質 177 34 kDa 0 0 0 21パーセント 0
神経前駆細胞発現、発達的にダウン調整4-様 101 kDa 0 20パーセント 0 0 0

表2:HIV-1産生中にヌクレオラー局所変異4、5、および6と複合体化した細胞宿主因子の同定。図6のクマシー染色SDS-PAGEゲルを、アンデム質量分析用に処理した。WT Rev 対ヌクレオラー変異 M4、M5、および M6 のタンパク質相互作用結果は、タンパク質同定確率 (パーセンテージ) によって要約されます。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

HIV-1の存在下でRev-NoLS変異とWT Revを比較した質量分析は、ウイルス複製サイクルに関与するヌクレオロール因子を理解するために評価された。これは、ウイルス感染に必要なヌクレオラー成分を同定するであろう。ヌクレオラーB23はRev-NoLSに対して高い親和性を有し、Rev3およびRev結合HIV mRNA22のヌクレオ細胞局在化における機能を有する。単一または複数のアルギニン置換を含むRev-NoLS変異を有するB23の親和性は、ウイルス産生中のRev-3'フラグの免疫沈殿を通じて評価された(図2;WTおよび突然変異M2、M6、およびM9)。単一点Rev-NoLS変異M4、M5、およびM6に対するB23親和性は、HIV-1複製の存在下で以前に調べられた。前の研究では、M4、M5、およびM6のIP溶出剤を、RevおよびB23親和性1に対するαフラグに特異的な抗体を用いてウェスタン免疫ブロッティングを行った。Revシングルポイント変異の背景には、B23結合親和性が有意に減少した。B23はHIV複製中にWT Revとの親和性を維持した。Rev-NoLS内で誘導された単一点突然変異は、HIV mRNA結合および輸送を促進する他の細胞宿主因子との結合親和性を減少させる期待された。このモデルにおけるRev-NoLSの単一および多点変異は、Revに対するヌクレオフォスミンB23親和性を廃止し、核細胞質シャトルおよびHIV mRNA輸送の中断を示した。ヌクレオロール因子(ヌクレオリンC23およびヌクレオソーム組立タンパク質1)、輸送因子(ARHGEF1およびTCB1D24)、およびスプライシング因子(hnRNPCおよびPNN)がRevタンパク質複合体との相互作用を通じてHIV-1感染サイクルに関与している可能性が高い。表1および表2は、パターンにおけるヌクレオラーと非ヌクレオラーの両方の他の細胞因子を明らかにし、Rev.を介してHIV-1複製サイクルに関与する可能性がある核因子因子 -snoRNA C/Dボックス58、snoRNAに関与する処理は、ヌクレオールスへのsnoRNA輸送、およびリボソームRNAの2'-O-メチル化−HIV-1複製サイクルにおけるこのタンパク質の機能が未だ不明のままである。HIV-1感染サイクルにおけるこれらの細胞因子の特定の役割は、現在調査中である。

ここで提示された結果は、HIV-1感染サイクルを維持するウイルス/宿主ヌクレオロール因子の同定にこのアプローチを使用することを示す。他の疾患モデルに関与するウイルス/宿主ヌクレオラー因子は、このアプローチを用いて同定することができる。さらに、1つの核因子が様々な疾患モデルにおいて多機能的な役割を果たしている可能性が高い。例えば、B23は、他のウイルス感染モデルにおけるヌクレオラーウイルスタンパク質の輸送、ウイルスアセンブリ、封入、複製、および遅延に関与している。B23は、ヌクレオサイトプラズム輸送のための細胞因子のNoLSとの相互作用において特徴付け-p120増殖因子(アミノ酸40〜57)23およびC23前rRNAプロセッサ(アミノ酸540〜628)24。B23はまた、ヒトT細胞リンパ球性ウイルス(HTLV-1)タンパク質レックス(アミノ酸1-22)25、HIV-1タット(アミノ酸49-57)2、およびHIV-1 Rev(アミノ酸37-47)26と相互作用することが文書化されている。日本脳炎ウイルス(JEV)ゲノムはヌクレオール局所タンパク質をコードし、アミノ酸Gly42およびPro43はJEV感染時にB23のN末端領域と相互作用し、ウイルスコアタンパク質/B23を中に輸送する。核27.B型肝炎ウイルス(HBV)の一本鎖RNAゲノムは、核コアタンパク質をコードする二本鎖DNAの一部で構成されています。HBVコアタンパク質は、核内の核オルオリンおよびB23と関連する28;B23は、コアタンパク質N末端ドメインとの相互作用を通じてHBVアセンブリで実証された。具体的には、B23アミノ酸259-294は、ウイルス封入29を可能にするHBVコアタンパク質のN末端ドメインに結合する。ネガティブセンス、一本鎖RNA型肝炎ウイルス(HDV)は、2つのアイソフォームでHDVAg抗原を発現する。RNA複製における小さなアイソフォーム補助具、および大きなアイソフォームはウイルスの組み立てを容易にする。RNA複製は核内で行われ、HDVAg30,31とのB23相互作用を必要とする。HDV感染はB23のアップレギュレーションを引き起こし、これは主に小さなHDVAgアイソフォームと相互作用し、大きなHDVAgアイソフォームとより少ない。相互作用は、B23が結合し、核蓄積を達成する小さなHDVAg NLSドメインを介して行われます。HdV結合部位をB23に削除すると、RNA複製が損なわれた。HDVAgは、核内のB23およびヌクレオリンと共局所化することが示された。ヌクレオリンは、リプレッサ32として転写特性を有することが発見され、HDV複製の調節のためのコンパートメントとして核を明らかにした。B23はまた、カポジ肉腫関連ヘルペスウイルス(KSHV)ゲノムの待ち時間にも関与している。KSHV潜伏タンパク質-v-サイクリン−宿主CDK6キナーゼを有し、Thr199でB23をリン酸化し、遅延関連核抗原33とのB23相互作用を促進する。遅延関連核抗原は、ウイルス溶解複製を防ぐために作用する。B23の枯渇はKSHV再活性化につながり、KSHV遅延のレギュレータとしてB23を明らかにする。HIV-1複製サイクルにおけるB23機能は、タットおよびRevのヌクレオ細胞質輸送活性において特徴付けられており、B23がHIV感染中に遅延を誘発できるかどうかは不明である。HIV-1の複製、カプセル化、および組み立てにおけるB23の関与は現在知られていない。

この方法を他の疾患モデルに適応させるには、適切な細胞株で発現されるタンパク質欠損感染性バックボーンの生成に多大な労力と時間が必要となる。このRev欠損HIV-1HXB2バックボーンの利点は、完全なウイルスバックボーン、ウイルス感染因子、およびHIV-1複製サイクルに関与する宿主因子の存在下でRev-NoLS変異を調べる能力である。他の研究は、完全なHIV-1感染系の不在でRevヌクレオラー機能を調べました.感染症および疾患経路の徹底的な特徴付けは、疾患の進行の自然な経過をサポートする代表的な環境を含める必要があります。2種類の分析を行い、核因子を同定する能力を比較した。表1は、タンパク質溶出物の直接質量分析分析の結果、WT Revに結合したままであった因子を示す。この分析は、HIV-1 Revのいくつかの既知の因子を生み出したこの直接的な方法は、SDS-PAGEゲル内で分離されたタンパク質の抽出およびそのようなタンパク質の質量分析分析を含む別のプロセスと比較した。この第2の方法は、Revタンパク質複合体に結合しているが、以前に同定された以下のタンパク質を欠いている様々な既知および潜在的な因子を生み出した: シグナル認識粒子14 kDa、真核翻訳開始因子4Bは、リボソームタンパク質L22、小ヌクレオールRNAC/Dボックス58B、及び11を含有する亜鉛フィンガーCCHCドメインである。最終的に、このプロトコルで質量分析分析に選択された優れた方法は、SDS-PAGEゲルからのペプチドの抽出を伴った。最初の直接方法は、ブロモフェノールブルーを含まない溶出液中の2xサンプルバッファを含んでいました。2xサンプルバッファーの残りの成分は、完全なトリプシン処理を妨げる可能性があり、質量分析分析のために不完全に処理されたペプチドを生成する可能性があります。第2の間接法は、SDS-PAGEの潜在的な汚染物質からトリプシン処理ペプチドを精製することができた。

ここで説明する質量分析調製法は、標的化を通じてHIV-1感染を根絶するための治療的介入の同定に利用することができる。支配的な否定的な活動とRev関数の逮捕に利用される。Rev 関数停止に対する関心の主な負の特性は次のとおりです。Rev変異体との多合化によるヌクレオラーWT Revの再局在化;HIV-1 mRNA輸送およびスプライシングに関与する主要な細胞因子との親和性の喪失。WT RevとRev-NoLS突然変異の共発現を伴うRev多量化を調べることができた。このモデルにおける支配的な負の突然変異は、WT Revで多量化し、核および細胞質に向かってヌクレオラーパターンをシフトし、Rev機能停止につながると予想される。質量分析は、HIV-1 mRNAスプライシングおよび輸送に関与する主要な細胞因子の損失を同定するために使用することができる。支配的な否定的なRev-NoLS変異との共発現の結果としてのWT Revとの欠損相互作用の同定は、HIV-1病因におけるヌクレオラー特異的経路の関与を明らかにするであろう。あるいは、Rev-NoLS変異の背景で生成されたウイルスHIV-1NL4-3粒子は、すべての包装された細胞因子について調べることができる。ウイルス粒子内に包装された細胞およびウイルス因子は、質量分析を通じてさらに同定され得る。これは、ウイルス粒子内のヌクレオロール因子の存在とウイルス感染における同定されたヌクレオロール因子の役割を明らかにするであろう。記載された方法は、研究対象経路の同定および特徴付けのための他のウイルスおよび疾患モデルに適用可能である。これは、限られた治療が利用可能な疾患に対する治療介入の開発を可能にします。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は何も開示していない。

Acknowledgments

著者らは、国立衛生研究所(NIH)エイズ研究・参照試薬プログラム、エイズ部門、国立アレルギー・感染症研究所が提供するHLfB付着培養のためのバーバラ・K・フェルバー博士とジョージ・N・パヴラキス博士を認めます。病気 (NIAID), NIH.著者らはまた、NIH、助成金AI042552とAI029329によって提供される財政源を認めます。

Materials

Name Company Catalog Number Comments
Acetic acid Fisher Chemical A38S-212
Acetonitrile Fisher Chemical A955-500
Acrylamide:Bisacrylamide BioRad 1610158
Ammonium bicarbonate Fisher Chemical A643-500
Ammonium persulfate Sigma-Aldrich 7727-54-0
ANTI-Flag M2 affinity gel Sigma-Aldrich A2220
anti-Flag M2 mouse monoclonal IgG Sigma-Aldrich F3165
BioMax MS film Carestream 8294985
Bio-Rad Protein Assay Dye Reagent Concentrate, 450 mL Bio-Rad 5000006
B23 mouse monoclonal IgG Santa Cruz Biotechnologies sc-47725
Bromophenol blue Sigma-Aldrich B0126
Carnation non-fat powdered milk Nestle N/A
Cell scraper ThermoFisher Scientific 179693PK
C18IonKey nanoTile column Waters 186003763
Corning 100-mm TC-treated culture dishes Fisher Scientific 08-772-22
Dithiothreitol Thermo Scientific J1539714
1 x DPBS Corning 21-030-CVRS
ECL Estern blotting substrate Pierce 32106
Ethanol, 200 proof Fisher Chemical A409-4
FBS Gibco 16000044
Formic Acid Fisher Chemical A117-50
GelCode blue stain reagent ThermoFisher 24590
Glycerol Fisher Chemical 56-81-5
goat-anti-mouse IgG-HRP Santa Cruz Biotechnologies sc-2005
Iodoacetamide ACROS Organics 122270050
KimWipe delicate task wiper Kimberly Clark Professional 34120
L-glutamine Gibco 25030081
Methanol Fisher Chemical 67-56-1
NanoAcuity UPLC Waters N/A
Pierce Silver Stain Kit Thermo Scientific 24600df
15-mL Polypropylene conical tube Falcon 352097
Prestained Protein Ladder, 10 to 180 kDa Thermo Scientific 26616
Protease inhibitor cocktail Roche 4693132001
Purified BSA New England Biolabs B9001
PVDF  Western blotting membrane Roche 3010040001
Sodium Pyruvate Gibco 11360070
10 x TBS Fisher Bioreagents BP2471500
TEMED BioRad 1610880edu
Triton X-100 detergent solution BioRad 1610407
Trizaic source Waters N/A
trypsin-EDTA Corning 25-051-CIS
Tween 20 BioRad 1706531
Synapt G2 mass spectrometer Waters N/A
Whatman filter paper Tisch Scientific 10427813

DOWNLOAD MATERIALS LIST

References

  1. Arizala, J. A. C., et al. Nucleolar Localization of HIV-1 Rev Is Required, Yet Insufficient for Production of Infectious Viral Particles. AIDS Research and Human Retroviruses. (2018).
  2. Li, Y. P. Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. Journal of Virology. 71, 4098-4102 (1997).
  3. Szebeni, A., et al. Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry. 36, 3941-3949 (1997).
  4. Truant, R., Cullen, B. R. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Molecular and Cellular Biology. 19, 1210-1217 (1999).
  5. Eirin-Lopez, J. M., Frehlick, L. J., Ausio, J. Long-term evolution and functional diversification in the members of the nucleophosmin/nucleoplasmin family of nuclear chaperones. Genetics. 173, 1835-1850 (2006).
  6. Frehlick, L. J., Eirin-Lopez, J. M., Ausio, J. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. BioEssays. 29, 49-59 (2007).
  7. Okuwaki, M., Matsumoto, K., Tsujimoto, M., Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Letters. 506, 272-276 (2001).
  8. Szebeni, A., Olson, M. O. Nucleolar protein B23 has molecular chaperone activities. Protein Science. 8, 905-912 (1999).
  9. Hingorani, K., Szebeni, A., Olson, M. O. Mapping the functional domains of nucleolar protein B23. Journal of Biological Chemistry. 275, 24451-24457 (2000).
  10. Borer, R. A., Lehner, C. F., Eppenberger, H. M., Nigg, E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 56, 379-390 (1989).
  11. Yun, J. P., et al. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. Journal of Cellular Biochemistry. 90, 1140-1148 (2003).
  12. Savkur, R. S., Olson, M. O. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Research. 26, 4508-4515 (1998).
  13. Herrera, J. E., Savkur, R., Olson, M. O. The ribonuclease activity of nucleolar protein B23. Nucleic Acids Research. 23, 3974-3979 (1995).
  14. Grisendi, S., et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 437, 147-153 (2005).
  15. Itahana, K., et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Molecular Cell. 12, 1151-1164 (2003).
  16. Ye, K. Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biology & Therapy. 4, 918-923 (2005).
  17. Kuo, M. L., den Besten, W., Bertwistle, D., Roussel, M. F., Sherr, C. J. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes & Development. 18, 1862-1874 (2004).
  18. Kuo, M. L., den Besten, W., Thomas, M. C., Sherr, C. J. Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle. 7, 3378-3387 (2008).
  19. Horn, H. F., Vousden, K. H. Cancer: guarding the guardian. Nature. 427, 110-111 (2004).
  20. Grisendi, S., Mecucci, C., Falini, B., Pandolfi, P. P. Nucleophosmin and cancer. Nature Reviews Cancer. 6, 493-505 (2006).
  21. Dingwall, C., et al. Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. The EMBO Journal. 6, 69-74 (1987).
  22. Fankhauser, C., Izaurralde, E., Adachi, Y., Wingfield, P., Laemmli, U. K. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Molecular and Cellular Biology. 11, 2567-2575 (1991).
  23. Valdez, B. C., et al. Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. Journal of Biological Chemistry. 269, 23776-23783 (1994).
  24. Li, Y. P., Busch, R. K., Valdez, B. C., Busch, H. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. European Journal of Biochemistry/FEBS. 237, 153-158 (1996).
  25. Adachi, Y., Copeland, T. D., Hatanaka, M., Oroszlan, S. Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. Journal of Biological Chemistry. 268, 13930-13934 (1993).
  26. Szebeni, A., Herrera, J. E., Olson, M. O. Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry. 34, 8037-8042 (1995).
  27. Tsuda, Y., et al. Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiology and Immunology. 50, 225-234 (2006).
  28. Ning, B., Shih, C. Nucleolar localization of human hepatitis B virus capsid protein. Journal of Virology. 78, 13653-13668 (2004).
  29. Lee, S. J., Shim, H. Y., Hsieh, A., Min, J. Y., Jung, G. Hepatitis B virus core interacts with the host cell nucleolar protein, nucleophosmin 1. Journal of Microbiology. 47, 746-752 (2009).
  30. Huang, W. H., Yung, B. Y., Syu, W. J., Lee, Y. H. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. Journal of Biological Chemistry. 276, 25166-25175 (2001).
  31. Li, Y. J., Macnaughton, T., Gao, L., Lai, M. M. RNA-templated replication of hepatitis delta virus: genomic and antigenomic RNAs associate with different nuclear bodies. Journal of Virology. 80, 6478-6486 (2006).
  32. Yang, T. H., et al. Purification and characterization of nucleolin and its identification as a transcription repressor. Molecular and Cellular Biology. 14, 6068-6074 (1994).
  33. Sarek, G., et al. Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathogens. 6, 1000818 (2010).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics